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Abstract

I present a unified framework to analyze debt relief and macroprudential policies in a liq-
uidity trap when households have private information. I develop a model with a deleveraging-
driven recession and a liquidity trap in which households differ in their impatience, which is
unobservable. Ex post debt relief stimulates the economy, but anticipated debt relief encour-
ages overborrowing ex ante, making savers worse off. Macroprudential taxes and debt limits
prevent the recession, but can harm impatient households, since the planner cannot directly
identify and compensate them. I solve for optimal policy, subject to the incentive constraints
imposed by private information. Optimal allocations can be implemented either by provid-
ing debt relief to moderate borrowers up to a maximum level, combined with a marginal
tax on debt above the cap, or with ex ante macroprudential policy - a targeted loan support
program, combined with a tax on excessive borrowing. These policies are ex ante Pareto im-
proving in a liquidity trap; in normal times, however, they are purely redistributive. These
results extend to economies with aggregate uncertainty, alternative sources of heterogeneity,
and endogenous labor supply.
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1 Introduction

The Great Recession saw an extraordinary contraction in output, employment and consumption,
driven in large part by household deleveraging. There are two obvious remedies for a debt-driven
recession: prevent borrowing ex ante, or write off debt ex post. A recent theoretical literature
makes the case for both policies. Debt relief is an ex post optimal policy in a liquidity trap:
transfers to indebted households, who have a high propensity to consume, stimulate demand,
raise aggregate income, and benefit everyone, even the households who are taxed to pay for
these transfers. Alternatively, macroprudential taxes or limits on borrowing can prevent the
overborrowing that leads to a recession in the first place.

But both debt relief and macroprudential regulation face criticisms, which are fundamentally
linked to the existence of private information. The literature mentioned above asks whether debt
relief is optimal in a liquidity trap, taking as given the distribution of household debt. However, a
common concern is that bailouts encourage households to borrow even more ex ante, making the
recession deeper. A social planner would like to write off debt for households who would have
borrowed anyway, without inducing anyone to borrow more than they would have done in the
absence of policy, but this is not possible, since households’ propensities to borrow are private
information. Thus transfers targeted to debtors inevitably encourage even patient households to
take on more debt, making the recession worse. Equally, one criticism of macroprudential limits
on borrowing is that they harm households who want to borrow. This is not a concern under full
information, since the planner can directly identify and compensate these households, leaving
them no worse off. However, if the government cannot observe a household’s type, compensating
transfers are not possible, and there is an efficiency-equity tradeoff: macroprudential policy
prevents a recession, but harms borrowers. Given the constraints imposed by private information,
can any transfer policies can avert a liquidity trap and make everyone better off?

To answer this question, I take a mechanism design approach to study debt relief and macro-
prudential policy. I build a model with three key ingredients. First, there is a distribution of
households who differ in their propensity to borrow, which can be interpreted as impatience, and
which is private information. Second, interest rates are constrained by a zero lower bound (ZLB);
when the ZLB binds, output is demand determined. Finally, there is an exogenous contraction in
the borrowing constraint - which is perfectly anticipated in the baseline model - which can make
the ZLB bind. The borrowing constraint also generates heterogeneity in households’ marginal
propensity to consume (MPC): highly indebted households will be liquidity constrained, and
have a higher MPC than savers, who are not constrained. Thus in this economy, unanticipated
transfers from savers to borrowers increase aggregate demand, and this in turn increases aggre-
gate income when the ZLB binds, making all households better off ex post.

However, I show that the concerns raised above are valid: anticipated debt relief may not be
ex ante Pareto improving, because it encourages overborrowing on both an intensive and an
extensive margin. On the intensive margin, if the government does not commit ex ante to limit
the scale of debt relief, borrowers take on more debt, since they are now richer in the future.
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This means the government must tax savers more heavily to write off borrowers’ debt, making
savers worse off, relative to a world without debt relief. On the extensive margin, even if the
government commits to a cap on debt relief, patient savers may overborrow in order to mimic
impatient borrowers and qualify for the transfer. Macroprudential policy also faces constraints.
Ex ante debt limits or taxes on borrowing prevent borrowers from taking on too much debt,
increase aggregate demand, and mitigate the liquidity trap. However, limits on borrowing may
not be ex ante Pareto improving, because they harm households who want to borrow.

To study optimal policy, I consider the problem of a social planner who chooses allocations
subject to the ZLB, the borrowing constraint, and private information, which imposes incentive
compatibility constraints stating that no household’s allocation can be so generous that another
household wants to mimic them. By varying the weight the planner puts on each agent’s utility,
I trace out the constrained Pareto frontier. I prove an equivalence result: any solution to the
social planner’s problem can be implemented as an equilibrium with transfers that depend on
a household’s debt level, either at date 1 (ex post redistribution) or at date 0 (ex ante macro-
prudential policy). Furthermore, efficient allocations can be implemented with particular simple
policies. First, they can be implemented with ex post debt relief with a cap. Under such a pol-
icy, the government writes off debt up to some maximum level. Above that amount, additional
borrowing is taxed, discouraging overborrowing on the intensive margin. Equivalently, efficient
allocations can be implemented with ex ante targeted loan support programs, which provide a
transfer to households who borrow above some minimum level, coupled with a macroprudential
tax on borrowing above that level.

In fact, debt relief with a cap (equivalently, targeted loan support) can be ex ante Pareto im-
proving relative to the competitive equilibrium. In an economy with two types, there always
exists a Pareto improving debt relief policy when the ZLB binds in equilibrium. Incentive con-
straints eventually restrict transfers from savers to borrowers, once these transfers become too
large. But in competitive equilibrium, there are no transfers, and incentive constraints are slack:
each individual strictly prefers her own allocation. Starting from equilibrium, there is always
some room to redistribute to borrowers without violating incentive constraints. However, when
borrowers are not too impatient relative to savers, the ZLB does not bind, and the competitive
equilibrium is constrained efficient. In this case, debt relief (equivalently, targeted loan support)
has a purely redistributive role: it implements allocations which are better for borrowers, but
worse for savers, relative to the competitive equilibrium.

One concern is that in a two agent economy, it may be too easy to design debt relief programs
which induce no extensive margin overborrowing. To address this concern, I also study opti-
mal policy with a continuous distribution of types, using Lagrangian methods similar to those
developed by Amador et al. [2006]. In this economy, transfers targeted to highly indebted house-
holds always induce some less indebted households to borrow more; optimal policy trades off
these distortions against the benefits from debt relief. Nonetheless, I show that an equilibrium in
which the ZLB binds is always ex ante Pareto inefficient, and debt relief with a cap (equivalently,
targeted loan support) remains ex ante Pareto efficient. However, simple linear policies may not
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be Pareto improving. In particular, they may make the most indebted borrowers worse off, since
they impose a marginal tax on excessive levels of debt.

I then address three further concerns regarding these results. First, while in the baseline
model the contraction in borrowing constraints is perfectly anticipated, a more realistic assump-
tion is that this shock only occurs with some probability. In this case, there is an even stronger
case for debt relief. The less agents anticipate the crisis, the less incentive concerns restrict debt
relief: if the crisis is completely unanticipated, concerns about ex ante incentives vanish com-
pletely. Moreover, with aggregate risk and incomplete markets, there is an additional role for
debt relief, namely to complete markets and insure agents against a contraction in borrowing
constraints. A second concern might be that debt relief or macroprudential taxes might not be
desirable if households have different motives for borrowing - perhaps if borrowers borrow be-
cause they expect high future income, rather than because they are impatient, writing off their
debt will not stimulate demand. I show that even when I extend the model to include alterna-
tive motives for borrowing, all the results go through. Thirdly, while my baseline model is an
endowment economy, I show that all the results go through in a more standard economy with
endogenous labor supply.

The rest of the paper is structured as follows. Section 2 presents the model. Section 3 shows
that inefficient overborrowing can occur in equilibrium, and ex post debt relief can be Pareto
improving; however, such a policy may not be incentive compatible. Section 4 characterizes
constrained efficient allocations in an economy with two types, discusses how they can be imple-
mented, and demonstrates conditions under which debt relief can be ex ante Pareto improving.
Section 5 describes how these results generize to a continuous distribution of types, and presents
a numerical example. Section 6 discusses the benefits and costs of macroprudential policy, and
shows how macroprudential policies can implement optimal allocations. Section 7 considers
three extensions: a probability of crisis less than 1, alternative sources of heterogeneity, and
endogenous labor supply. Section 8 concludes.

1.1 Related literature

Many recent contributions consider models in which deleveraging leads to a liquidity trap and
debt relief is ex post optimal. Eggertsson and Krugman [2012] and Guerrieri and Lorenzoni
[2011] were among the first to present models in which an exogenous shock to borrowing con-
straints causes a recession due to the zero lower bound. My model features the same shock, but
asks a different question: what is the optimal policy in response to this shock?

There is a well-established literature on the use of monetary policy at the zero lower bound
(the classic papers are Krugman [1998] and Eggertsson and Woodford [2003]; for a recent con-
tribution, see Werning [2012]). There is also a more recent literature on government spending.
Eggertsson and Krugman [2012] themselves advocated government purchases, noting that while
transfers from savers to borrowers might be stimulative, such transfers are hard to target in
practice. Bilbiie et al. [2013b] show that government spending is never Pareto improving in a
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Eggertsson and Krugman [2012]-type model, since it hurts savers by lowering interest rates. I
study transfer policy, rather than monetary policy or government spending.

My paper is also related to a growing literature on the positive effects of targeted transfers.
Oh and Reis [2012] emphasize that government transfers increased much more than government
spending during the Great Recession, and provide a model to understand the effects of targeted
transfers. McKay and Reis [2013] assess the extent to which automatic stabilizers reduce aggre-
gate volatility. A related empirical literature documents that the marginal propensity to consume
varies across households and is correlated with debt (Misra and Surico [2014], Jappelli and Pista-
ferri [2014], Cloyne and Surico [2013]); Kaplan and Violante [2014] present a model which can
match these facts. Relative to these authors, I focus on the effect of transfers in a liquidity trap.

A number of recent contributions discuss the role of targeted transfers in a liquidity trap.
Giambattista and Pennings [2013] and Mehrotra [2013] compare the multiplier effects of targeted
transfers and government spending in a liquidity trap. Bilbiie et al. [2013a] show that both
balanced-budget redistribution and uniform, debt financed tax cuts are expansionary. Bilbiie
et al. [2013b] show that debt-financed tax cuts are Pareto improving, as they relax borrowers’
credit constraint. Rather than studying transfers in general, I focus on debt relief.

A few recent contributions discuss debt relief. Fornaro [2013] shows that debt relief is expan-
sionary, and may be Pareto improving, at the zero lower bound. Guerrieri and Iacoviello [2013]
also show numerically that debt relief can be Pareto improving in a rather different model of
housing and collateral constraints. These papers study ex post debt relief, and do not consider
whether the anticipation of debt relief can distort incentives ex ante. My contribution, relative to
this whole literature, is to consider how ex post redistribution itself distorts incentives ex ante,
and to characterize optimal policy taking these distortions into account.

In this sense, my results are most similar to those of Bianchi [2012] who considers optimal
bailouts of firms in a small open economy model. Ex post, bailouts relax collateral constraints
and increase output, but ex ante, bailouts induce overborrowing: optimal policy combines ex
ante macroprudential policy and ex post bailouts. In Bianchi [2012]’s model, the planner can
mitigate moral hazard effects by making bailouts conditional on a systemic crisis, rather than
individual borrowing. Since firms are identical, there is no need to target particular firms. In my
model, the central friction is that debt relief must be targeted at particular households based on
observable debt, and savers can mimic borrowers if the bailout is too large. Another difference is
that I consider debt relief targeted to households, rather than firms.1

Most closely related to my paper are Korinek and Simsek [2014] and Farhi and Werning
[2013]. These authors describe in detail the macroeconomic externality that arises in models such

1This also differentiates my results from a few recent papers which take a mechanism design approach to study
transfer policies targeted at banks. Philippon and Schnabl [2013] study efficient recapitalization in an economy with
debt overhang, in which government does not observe banks’ asset quality. Tirole [2012] takes a mechanism design
approach to analyze how targeted purchases can rejuvenate asset markets. Farhi and Tirole [2012] analyze optimal
bailouts when the government cannot perfectly observe a bank’s need for liquidity. I also use a mechanism design
approach to study targeted transfers, but consider different transfer policies (debt relief, rather than debt-equity swaps
or asset purchases), different recipients (households, rather than banks), and a different rationale for intervention
(aggregate demand externalities, rather than debt overhang or adverse selection).
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as that of Eggertsson and Krugman [2012]: households overborrow and then deleverage, without
internalizing that their deleveraging reduces aggregate income. They show that unanticipated
ex post redistribution (debt relief) can be Pareto improving. In contrast, I study the design of ex
post policies, taking into account how these policies affect borrowing ex ante. The main focus
of Korinek and Simsek [2014] and Farhi and Werning [2013] is to consider how ex ante macro-
prudential policies can prevent overborrowing under full information.2 I study macroprudential
policy under the (realistic) assumption that preferences are private information, so it is not pos-
sible to directly target taxes and transfers to households based on their unobservable type.

A vast literature in mechanism design and optimal taxation (Mirrlees [1971]) considers the
problem of a social planner who must redistribute among agents whose preferences or skills are
private information.3 The key insight from this literature is that private information reduces the
ability of the planner to redistribute. However, it is still possible to achieve some redistribution,
by distorting allocations away from the first-best. I apply a mechanism design approach to study
optimal redistribution and macroprudential policy in an economy with macroeconomic exter-
nalities.4 While macroeconomic externalities provide a new motive for redistribution, private
information still constrains the planner’s ability to redistribute.

2 Model

This section presents the baseline model and defines the equilibrium in the absence of policy.

2.1 Agents

Time is discrete and indexed by t = 0, 1, .... There exists a distribution of households with total
measure 1. Households have preferences over consumption

U(ci
0, θi) +

∞

∑
t=1

βtu(ci
t) (1)

where u′ > 0, u′′ < 0, β ∈ (0, 1), Uc > 0, Ucc < 0. θi measures household i’s demand for date
0 consumption, with Ucθ > 0. Agents with a higher θi are more impatient, have a more urgent
need for consumption at date 0, and will be borrowers in equilibrium.5 In all subsequent periods,
agents have the same preferences (this ensures that a well-defined steady state exist). In the
benchmark model, this is the only source of heterogeneity between agents. For now, I allow θi to

2There is also a much larger literature on macroprudential policy which focuses on pecuniary externalities, rather
than aggregate demand externalities. The mechanism design approach I follow in this paper could also be applied to
consider the equity-efficiency tradeoffs associated with these policies.

3Formally, my model is closest to the literature on Pareto-efficient income taxation (Werning [2007]); in particular,
results for the two-type economy are similar to Stiglitz [1982], who considers a model with two agents.

4In this sense, my results are also related to the literature on mechanism design with externalities (Baliga and
Maskin [2003]).

5For now, I interpret θ as a preference or discount factor shock; in Section 7, I show that it can be reinterpreted in
terms of income, so high-θ households borrow because they have temporarily low income at date 0.

6



have a general distribution function F(θ). Later, I will focus on two special cases, which I define
here.

Definition 2.1. In the two type economy, F(θ) is a discrete distribution with probability mass f (θS) =

f (θB) = 1/2, θB > θS = 1.
In the continuous type economy, θ has a continuous density f (θ) with support [

¯
θ, θ̄].

Agents face a standard budget constraint

ci
t = yi

t − di
t +

di
t+1

1 + rt
(2)

where di
t+1 is the face value of debt agent i takes out in period t and promises to repay in period

t + 1, rt is the real interest rate on a loan between periods t and t + 1, and yi
t is i’s income. Each

agent i can costlessly produce up to y∗ of their own differentiated variety of the output good.
Each agent’s consumption ci

t is an aggregate of all these varieties yj
t, j ∈ [0, 1], providing a motive

for trade. yi
t is not a choice variable of the household: instead, each household takes the demand

for its good as given, and produces whatever is necessary to meet demand. Agents have no
initial debt:

di
0 = 0, ∀i (3)

Agents also face an ad hoc borrowing constraint φt ≥ 0 in the spirit of Aiyagari [1994]:

di
t+1 ≤ φt, t = 1, ... (4)

Implicitly, φt reflects the collateralized value of durable goods such as housing, as in Kiyotaki
and Moore [1997] (although this is not explicitly modelled here). As in Korinek and Simsek
[2014], Eggertsson and Krugman [2012], I model a financial crisis as an exogenous tightening of
the constraint. Specifically, households are unconstrained at date 0 (φ0 = ∞) but the constraint
permanently falls to φ > 0 at date 1: φt = φ ≥ 0, t ≥ 1. In the baseline model, this tightening is
perfectly anticipated; in Section 6, I relax this assumption.

2.2 Equilibrium

First, I consider a Walrasian equilibrium, without any frictions (besides the borrowing constraint).
I then add the zero lower bound constraint on interest rates. This forces me to modify the
standard Walrasian equilibrium concept, as I describe later.

Definition 2.2. A Walrasian equilibrium is {ci
t, di

t, yt, rt} such that

1. each household i chooses {ci
t, di

t} to maximize (1) s.t. (2), (3), (4)

2.
∫

ci
t di = y∗ = yi

t, ∀i, t = 0, 1, ...

7



I now characterize equilibrium in the two type economy starting in date 1, taking debt at the
start of date 1 as given.6

Proposition 2.3. In a Walrasian equilibrium, in the two type economy:

1. If dB
1 ≤ φ, consumption, debt and interest rates are constant in periods t ≥ 1: rt = r∗ := β−1 − 1,

ci
t = y∗ − (1− β)di

1, di
t = di

1.

2. If dB
1 > φ, B is borrowing constrained in period 1: dB

2 = φ. Consumption, debt and interest rates
are constant in periods t ≥ 2: rt = r∗, ci

t = y∗ − (1− β)φ, di
t = φ. r1 = r(dB

1 ), implicitly defined
by

1 + r1 =

u′
(

y∗ + dB
1 −

φ

1 + r1

)
βu′ (y∗ + (1− β)φ)

r(dB
1 ) is decreasing in dB

1 , with r(φ) = r∗.

Equilibrium interest rates are decreasing in d1. If debt is sufficiently low, or the tightening of
borrowing constraints is not too severe, the economy immediately converges to a steady state at
date 1. If debt is too high, borrowers are no longer able to roll over their debt, and are forced
to pay back some debt, temporarily reducing their consumption. In order for markets to clear,
savers must consume more at date 1 than they do at date 2. Interest rates must fall to induce
them to do so, thus r1 is a decreasing function of d1.

Figure 1 illustrates. Aggregate date 1 consumption is decreasing in r1. For a given interest
rate, aggregate consumption is also decreasing in borrowers’ debt dB

1 , when debt is high enough
that the borrowing constraint binds. When borrowers are liquidity constrained, their marginal
propensity to consume is 1, and an increase in debt reduces their consumption one for one. The
corresponding increase in savers’ net worth increases savers’ consumption, but less than one for
one, because savers’ MPC is much less than 1. Consequently, an increase in debt tends to reduce
aggregate consumption. Interest rates must fall to keep aggregate consumption equal to y∗.

I now introduce a constraint on interest rates, rt ≥ r̄. For simplicity, in what follows I assume
r̄ = 0. The interest rate rt required to clear markets may be negative, violating this zero lower
bound (ZLB) constraint. In this case, the above equilibrium is no longer possible, and a new
equilibrium concept is required. I assume that when the ZLB binds, households cannot sell their
whole endowment, and output (i.e., the amount they do sell) is the variable that adjusts to clear
markets. Aggregate consumption is still equal to aggregate output. However, aggregate output
yt can fall below potential output y∗ when the zero lower bound binds. Formally:

Definition 2.4. A ZLB-constrained equilibrium is {ci
t, di

t, yt, rt} such that

1. each household i chooses {ci
t, di

t} to maximize (1) s.t. (2), (3) , (4)

2.
∫

ci
t di = 2yt

6The proof of this Proposition, and all subsequent Propositions, is in the Appendix.
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Figure 1: Walrasian equilibrium

3. rt ≥ 0, yi
t = yt ≤ y∗, rt(y∗ − yt) = 0

When interest rates can adjust to clear markets, they do, and agents sell all of their endow-
ment. When the ZLB prevents interest rates from falling enough to clear markets, agents sell less
than their total endowment, and income yt is the variable that adjusts to clear markets.

Since this is a real model, some justification for the constraint rt ≥ 0 is in order. The constraint
is a tractable way to model the effect of a zero lower bound on nominal interest rates, combined
with a limit on the expected rate of inflation that the central bank can or will target. In Appendix
A I show that this equilibrium is isomorphic to the limit of a standard New Keynesian model as
prices become infinitely sticky, as in Korinek and Simsek [2014]. In Appendix B I present two
alternative economies providing a microfoundation for this equilibrium concept. The first draws
on the extensive literature on rationing or non-Walrasian equilibria (see e.g. Benassy [1993] for a
survey, and Kocherlakota [2013], Caballero and Farhi [2014] for two recent papers employing a
similar concept). The second is an economy with downward nominal wage rigidity drawing on
Schmitt-Grohé and Uríbe [2011].

The following Proposition characterizes ZLB-constrained equilibria in the two-type economy.

Proposition 2.5. In the two-type economy:

1. If r(d1) ≥ 0, the Walrasian equilibrium is also the ZLB-constrained equilibrium.

2. If r(d1) < 0, then in a ZLB-constrained equilibrium:

r1 = 0

u′(cS
1) = βu′ (y∗ + (1− β)φ)

y1 = cS
1 − d1 + φ < y∗

cB
1 = cS

1 − 2d1 + 2φ

The economy enters a steady state in period 2, as in the Walrasian equilibrium.
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Proof. The first part of the proposition is obvious. To prove the second part, first note that if
r(d1) < 0, we cannot have a Walrasian equilibrium satisfying the ZLB. We must have r1 = 0 and
y1 < y∗. Since borrowers are constrained at t = 1, cB

1 = y1 − d1 + φ. Substituting this into the
market clearing condition cS

1 + cB
1 = 2y1, we get the above result.

When debt is not too high, interest rates are positive, the ZLB does not bind, and markets
clear. When debt is too high, borrowers’ consumption falls sharply in period 1, and the ZLB
prevents interest rates from falling enough to induce savers to consume the remaining output.
The fall in income forces borrowers to reduce spending further. Figure 2 illustrates.

 

Figure 2: ZLB-constrained equilibrium

3 Liquidity traps and overborrowing

In this section, I first restate two results from the recent literature on liquidity traps and debt
relief (in particular, Korinek and Simsek [2014]). First, overborrowing can occur in equilibrium:
if the motive for borrowing is sufficiently strong, borrowers may take on so much debt that they
trigger the ZLB, even though they know this will happen. Second, any equilibrium in which the
ZLB binds is Pareto inefficient. Ex post, taxing savers and writing off borrowers’ debt restores
output to potential, makes borrowers better off, and leaves savers no worse off.

I then show that such a policy, while ex post optimal, may have adverse incentive effects ex
ante. First, lump sum redistribution induces overborrowing, as borrowers take out more debt,
anticipating that they will be richer in the future. Second, even if the government commits to
a cap on debt relief, a transfer large enough to restore full employment may not be incentive
compatible, since savers may take on debt in order to qualify for the transfer.7

In this section, and in Section 4, I focus on the two type economy to build intuition. In Section
5, I show how these results generalize to a continuum of types.

7In section 6, I show that private information introduces similar problems for macroprudential policy.
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3.1 Overborrowing and the potential gains from transfers

A natural question, posed by Korinek and Simsek [2014], is whether borrowers may take on so
much debt that the ZLB binds at date 1 even though they anticipate this happening. The next
proposition shows that this is indeed possible, under the following assumption:

Assumption 3.1.
u′(2y∗) < βu′ (y∗ + (1− β)φ)

The market clearing interest rate is decreasing in d1. As borrowers become more impatient,
they borrow more: in the limit as they become infinitely impatient, they promise to repay all
their income at date 1, so savers must consume the whole aggregate endowment. Assumption
(3.1) ensures that they would only do so if the date 1 interest rate was negative. This guarantees
that if borrowers are sufficiently impatient, they will take on so much debt that r(d) < 0.

Proposition 3.2. There exists θZLB ∈ (1, ∞) such that r(d1) < 0 if θB > θZLB.

If the ZLB binds at date 1, the recession makes households poorer, and ceteris paribus they
want to borrow more at date 0. But if borrowers are sufficiently impatient, their impatience
outweighs this wealth effect, and they take on so much debt that the ZLB binds.

An equilibrium in which the ZLB binds is ex post Pareto inefficient, since unanticipated
redistribution from savers to borrowers can be Pareto improving. Suppose savers’ income is
unexpectedly reduced to yt− T, and borrowers’ income is unexpectedly increased to yt + T. This
is identical to an unanticipated reduction in the borrowers’ debt. Redistribution directly reduces
savers’ income by T. However, since output is decreasing one for one in borrowers’ debt, writing
off T debt increases savers’ income by T, leaving them no worse off. Borrowers, meanwhile,
benefit twice from the redistribution: their debt falls by T, and their income rises by T due to the
multiplier effect of their own spending. So we have a Pareto improvement. Given a large enough
redistribution T, it is possible to restore full employment, as the following Proposition states:

Proposition 3.3. If the borrowers receive an unanticipated increase in income TFE(d1) = d1− (cB
1 + φ−

y∗) and the savers face an unanticipated fall in income TFE(d1):

1. There is full employment: y1 = y∗

2. Borrowers’ consumption increases to 2y∗ − cS
1 > cS

1 − 2d1 + 2φ

3. Savers’ consumption is unchanged.

If the redistribution is equal to T < TFE(d1), y1 = cS
1 + T + φ− d.

Proof. The unanticipated redistribution is equivalent to a change in dB
1 . The result follows by

replacing d1 with d1 − T in the equilibrium described in Proposition 2.5.
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3.2 Equilibrium with transfers

The government may attempt to implement a lump sum redistribution by writing off borrowers’
debt and taxing savers. However, if redistribution is implemented through policy, it will be
anticipated, and may distort decisions ex ante. To consider this possibility, it is necessary to
define an equilibrium with policy.

I now replace the budget constraint (2) with the following:

ci
1 = yi

1 − di
1 +

di
2

1 + r1
+ T(di

1, θi)− T̄ (5)

ci
t = yi

t − di
t +

di
t+1

1 + rt
for t 6= 1

where for any debt level di
1, the transfer to agent i in period 1 is T(di

1, θi)− T̄.8 For now, I allow
the government to observe households’ type, and target transfers directly. The bulk of this paper
will consider the case where θ is private information, and transfers can only depend on di

1.
The planner cannot make any taxes or transfers to agents starting in date 2, and must run a

balanced budget: ∫
T(di

1, θi)di = T̄ (6)

This assumption is crucial. If the government could impose taxes and transfers forever, it would
be possible to completely undo the effect of the liquidity constraint, for example through a deficit-
financed transfer to all households (Woodford [1990], Yared [2013], Bilbiie et al. [2013b]). I rule
out such policies in order to isolate the effects of debt relief. Government credit policies may be
a powerful tool in responding to recessions caused by a contraction in private credit. My goal is
to evaluate whether non-credit policies, such as debt relief, can also be effective (not to seriously
compare debt relief to other fiscal or monetary policies, a task which I leave to future work).9

I now define a ZLB-constrained equilibrium with debt-contingent date 1 transfers.10

Definition 3.4. A ZLB-constrained equilibrium with transfers is {ci
t, di

t, yt, rt, T̄} such that, given a
transfer function T(d, θ):

1. each household i chooses {ci
t, di

t} to maximize (1) s.t. (5), (3), (4)

2.
∫

ci
t di = yt

3. rt ≥ 0, yt ≤ y∗, rt(y∗ − yt) = 0

4. the government budget constraint (6) is satisfied.

8It is always possible to normalize T̄ = 0. I write the transfer in this general form to ensure that balanced-budget
equilibrum is defined for any transfer function T(d, θ).

9One motivation for employing non-credit policy in addition to deficit-financed transfers might be a concern with
the distortionary effects of non-lump sum transfers in the long run, which is not modelled here. Non-credit polices
such as debt relief are also feasible even when the government faces borrowing constraints, in addition to the private
sector.

10Equilibria with debt-contingent date 0 transfers are defined analogously, and are considered in Section 6.
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3.3 Debt relief induces overborrowing

Having defined ZLB-constrained equilibrium with transfers, I describe how the prospect of debt
relief distorts decisions ex ante. In this stylized model, there are two ways in which this can
happen: the intensive and the extensive margin. Along the intensive margin, the anticipation of
debt relief causes borrowers to borrow more, because they will be richer in period 1, and want
to borrow against that wealth at date 0. I show that the ex post optimal policy is never Pareto
improving ex ante: some commitment is necessary if we are to obtain a Pareto improvement.

Suppose first that the government does not commit ex ante to a particular level of transfers.
Instead, after observing the equilibrium level of debt d∗1 , it makes whatever transfer TFE(d∗1) to
borrowers restores full employment, and finances this with a lump sum tax on savers.11 Note
that since an individual borrower is measure zero, the transfer she receives does not depend on
her own debt, but only on aggregate debt d∗1 , which she is too small to affect.

Proposition 3.5. Consider a constant transfer function T(d, θB) = T∗, T(d, θS) = −T∗, ∀d. Suppose
T∗ = TFE(d∗), where d∗ is the level of dB

1 in the equilibrium with transfers, given T∗. This equilibrium is
not Pareto improving relative to the equilibrium without transfers. Savers are strictly worse off.

Proof. Combining the savers’ and borrowers’ Euler equations and using market clearing

Uc(cS
0 , θS)

Uc(2y∗ − cS
0 , θB)

=
u′(cS

1)

u′(2y∗ − cS
1)

>
u′(cS

1)

u′(ĉB
1 )

where ĉB
1 < 2y∗ − cS

1 denotes the equilibrium without policy. It follows that cS
0 < ĉS

0 , and since
cS

0 = ĉS
0 , savers are worse off.

If the government makes a transfer to borrowers, they will be richer at date 1. Anticipating
this, they borrow against this future income to consume more at date 0, and in equilibrium,
savers consume less. In this sense, debt relief encourages overborrowing.

Note that this result holds even if borrowers do not perceive that their individual debt will
be written off: if they did, there would be even more overborrowing ex ante. Suppose borrowers
expect the government to write off a fraction τ of their debt: that is, TB(d) = τd. Then they face
an effective gross interest rate of (1 + r0)(1− τ), while savers face an interest rate 1 + r0. This
wedge between the borrowers’ and savers’ Euler equations makes the borrowers’ consumption
even higher at date 0 and makes savers even worse off.

11Throughout this paper, I consider debt relief policies in which the government assumes responsibility for borrow-
ers’ debt, and makes payments to savers on the borrowers’ behalf, financing these payments with lump sum taxes on
the savers. Crucially, since an individual saver is measure zero, her lending decision does not affect the lump sum
tax required to pay for the debt relief. One could consider an alternative debt relief policy, in which the government
decrees that borrowers no longer have to make some promised payments to savers (effectively, legislating a mass
default). Under this alternative policy, debt relief would create default risk, which will be priced into the interest
rates charged by savers at date 0. In contrast, under the policy considered in this paper, interest rates are not directly
affected by debt relief, since there is no default.
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3.4 Is debt relief incentive compatible?

Above, I showed that debt relief without commitment induces overborrowing, and is not ex ante
Pareto improving. In this section, I show that even if the government commits to limit the amount
of debt relief, the full employment transfer may not be incentive compatible. If debt relief is too
generous, savers switch to become borrowers, and the equilibrium breaks down. This problem
arises if borrowers are sufficiently impatient, so they take on so much debt that the required
amount of debt relief would tempt the savers to borrow.

One way to limit debt relief is as follows. Take the level of debt in the equilbrium without
policy, d̂. Let the government give a transfer TFE(d̂) to borrowers with exactly d̂ debt.12 Since
borrowers only receive a transfer if they borrow exactly d̂, this policy obviously cannot induce
overborrowing. Clearly, this transfer function is unrealistic. My goal is to show that even if I
allow the government to completely avoid overborrowing in this way, another problem remains.

Assume that household type, θi, is private information: the government cannot directly distin-
guish type S and type B agents. In this case, transfers must be anonymous: T(d, θS) = T(d, θB) =

T(d). Formally:

Definition 3.6. A balanced budget equilibrium with anonymous transfers (henceforth, an equilib-
rium with transfers) is a balanced budget equilibrium with transfers in which T(d, θ) = T(d), ∀θ.

With anonymous transfers, the only way to transfer funds to borrowers is to reward agents
who take on more debt, and tax savers, i.e. to make T(d) positive for some d > 0, and negative
for some d < 0. If the transfer T(d̂) is sufficiently large, savers will receive strictly higher utility
by mimicking borrowers, taking on debt d̂ instead of saving d̂. Then the ex post optimal debt
relief policy is not incentive compatible, and cannot be implemented. If the government offered
such generous debt relief, at least some savers would mimic borrowers, and borrow d̂. Then the
government will be forced to raise taxes at date 1, and the net transfer to borrowers will not be
enough to restore full employment

Figure 3 illustrates a case in which the full employment transfer is not incentive compatible.
Date 1 output is below potential, y1 < y∗. Savers’ date 1 consumption is constrained by the ZLB.
Through taxes and transfers, the government could essentially transfer all the surplus output,
y∗ − y, to the borrowers, increasing their date 1 consumption and leaving everything else un-
changed. However, then borrowers’ allocation would give strictly higher utility to savers than
their own allocation, and savers would rather mimic borrowers than choose their own allocation.
At least some savers will take on the same debt as borrowers in order to qualify for the transfer
at date 1, and the government will be forced to reduce the net transfer to borrowers.

When will the FE transfer violate incentive compatibility? That is, when will savers prefer
borrowers’ allocation (including the date 1 transfer) to their own allocation? Borrowers consume
less than savers at date 1, despite the transfer, but consume more at date 0. If borrowers are
sufficiently impatient (θB is large enough), they consume so much more at date 0 that savers

12Formally, this corresponds to the transfer functions TB(d) = TFE(d̂)1(d = d̂), TS(d) = −TFE.
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Figure 3: Full employment transfer is not incentive compatible

would want to mimic them and do the same, if the government writes off their debt at date 1.
As β → 1, steady state interest rates go to zero, so savers’ steady state consumption converges
to their income y∗; at the same time, as savers become more patient, they become unwilling
to consume more at date 1 than they do in the steady state, so their date 1 consumption also
converges to y∗. The cost of mimicking borrowers - lower consumption at date 1 and in steady
state - converges to zero, so savers become increasingly willing to mimic borrowers.

Proposition 3.7. Consider the transfer function T(d) = TFE(d̂) if d = d̂, T(d) = −TFE(d̂) if d 6= d̂,
where d̂ is the debt level in the equilibrium without policy. There exists a continuous function θFE(β, φ),
which may equal ∞, such that:

1. If θB ≤ θFE, the transfer is incentive compatible. There exists an equilibrium with transfers with
full employment which is a Pareto improvement over the equilibrium without policy.

2. If θB > θFE, the transfer is not incentive compatible.

3. θFE(β, φ) ≥ θZLB. If the FE transfer is not incentive compatible, the ZLB must bind in equilibrium.

4. θFE(β, φ) is increasing in β and decreasing in φ, with θFE(1, 0) = 1. That is, if β = 1, φ = 0, the
transfer is not incentive compatible for any θB > 1. For any θB ∈ [1, ∞), there exist β̄, φ̄ sufficiently
close to 1, 0 such that the FE transfer is not incentive compatible if β > β̄, φ < φ̄.

4 Optimal policy in the two type economy

In the previous section, I showed that poorly designed debt relief policies, while optimal ex post,
can have harmful incentive effects ex ante. The question remains: what is optimal policy in this
economy? Can sophisticated debt relief programs avoid these adverse incentives?

To answer these questions, I now analyze optimal policy. First I solve the Pareto problem,
subject to the constraints imposed by incentive compatibility and the zero lower bound. I let
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the government choose any system of taxes and transfers which depend only on an agent’s ob-
servable debt, not on her unobservable type, and show that solutions to the Pareto problem can
be implemented with such debt-contingent transfers. I show that debt relief always implements
some constrained efficient allocations (in particular, those which are relatively favorable for bor-
rowers). When the ZLB binds, some debt relief policy is always Pareto improving. When the ZLB
does not bind, debt relief is purely redistributive, taking from savers and giving to borrowers.

4.1 Pareto problem

To characterize constrained efficient allocations, I consider the problem of a social planner who
puts weight α on savers and 1− α on borrowers, and faces four sets of constraints. First, resource
feasibility. Second, the liquidity constraint at date 1, which (combined with the assumption of
no transfers at date 2) puts a lower bound on the date 2 consumption of borrowers. Third,
the zero lower bound, which imposes that the savers’ Euler equations must be satisfied with a
nonnegative interest rate. And fourth, incentive compatibility, which states that neither agent can
strictly prefer the other agent’s allocation. As discussed above, since my focus is on non-credit
policies, I assume the planner cannot make any taxes or transfers to agents starting in date 2, and
must run a balanced budget. Consequently, the economy always enters a steady state at date 2.

max α

{
U(cS

0 , θS) + βu(cS
1) +

β2

1− β
u(cS

2)

}
+ (1− α)

{
U(cB

0 , θB) + βu(cB
1 ) +

β2

1− β
u(cB

2 )

}
(7)

s.t. cS
0 + cB

0 ≤ 2y∗ (RC0)

cS
1 + cB

1 ≤ 2y∗ (RC1)

cS
2 + cB

2 = 2y∗ (RC2)

cB
2 ≥ y∗ − (1− β)φ (BC)

u′(cS
1) ≥ βu′(cS

2) (ZLB)

U(cS
0 , θS) + βu(cS

1) +
β2

1− β
u(cS

2) ≥ U(cB
0 , θS) + βu(cB

1 ) +
β2

1− β
u(cB

2 ) (ICS)

U(cB
0 , θB) + βu(cB

1 ) +
β2

1− β
u(cB

2 ) ≥ U(cS
0 , θB) + βu(cS

1) +
β2

1− β
u(cS

2) (ICB)

Constrained efficient allocations solve (7) for some α ∈ (0, 1). Varying α traces out the constrained
Pareto frontier. The following proposition characterizes constrained efficient allocations.

Proposition 4.1. There are ten classes of constrained efficient allocation.

1. (RC0) and (RC2) always bind.

2. Either (ICS) binds, (ICB) binds, or no incentive constraints bind. There exist αB, αS with 1 > αB >

αs > 0 such that (ICB) binds iff α > αB and (ICS) binds iff α < αS.

3. Either neither (BC) nor (ZLB) bind, only (BC) binds, or (BC) and (ZLB) both bind.
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4. (RC1) binds unless (ICS), (BC) and (ZLB) all bind. In this case, (RC1) may be slack.

Figure 4 illustrates point 2.13 It shows which incentive constraints bind, as a function of α and
θB. The dark grey region on the left shows the set of (α, θB) for which (ICS) binds; the unshaded
middle region shows the set where neither constraint binds; and the light grey region on the
right shows the set where (ICB) binds. Setting α = 0 selects an allocation which maximizes B’s
utility, subject to the remaining constraints, putting no weight on S. Absent incentive compati-
bility constraints, this allocation would have B consuming everything and S nothing. Incentive
compatibility rules this out, since S would want to mimic B. So when α = 0, (ICS) always binds.
Increasing α, we go from left to right, moving along the Pareto frontier towards allocations that
are better for S and worse for B. Eventually, S’s utility increases so much that (ICS) no longer
binds, and each individual strictly prefers his own allocation. 14 Increasing α further, eventually
B’s utility falls so much that he prefers S’s allocation, and (ICB) binds.

 

Figure 4: Optimal allocations in (α, θB)-space

Figure 5 illustrates point 3. It shows whether the borrowing constraint is slack, the borrowing
constraint binds, or both the borrowing constraint and the ZLB binds, as a function of α and
θB. When θB is close to θS = 1, borrowers are almost as patient as savers, and have similar
consumption profiles. The borrowing constraint does not bind at date 1, and the economy enters
steady state immediately. As we raise θB, borrowers become more impatient, consuming more at
date 0 and less at dates 1 and 2. Eventually, the borrowing constraint binds: the planner would
like to give reduce borrowers’ steady state consumption, but would increase steady state debt
above φ. Increasing θB further, borrowers become yet more impatient, and the planner gives less

13This figure is not to scale. In particular, note that the two shaded regions meet at the point α = 0.5, θ = 1, which
should lie in the middle of the horizontal axis.

14This region only exists when agents have different preferences, i.e. θB > θS = 1.
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to borrowers and more to savers at date 1. Date 2 allocations, however, remain fixed. Savers
must tolerate an increasingly steep decline in consumption between dates 1 and 2; interest rates
fall to induce them to do so. Eventually, (ZLB) binds, and we enter the light grey region at the
top of Figure 5. Savers consume c̄S

1 , the maximum they can be induced to consume with zero
interest rates. Unlike in the competitive equilibrium, this does not generally mean that aggregate
consumption falls below output: the planner recognizes the ZLB constraint, gives the remaining
consumption to the borrowers, and distributes date 0 consumption between B and S.

 

Figure 5: Optimal allocations in (α, θB)-space

Finally, Figure 6 illustrates point 3. It shows the region of parameter space (shaded black)
in which the date 1 resource constraint is slack, so aggregate consumption is less than potential
output. The figure shows that this may be constrained efficient, but only if (ZLB) and (ICS) both
bind. This will be the case if θB is high enough, in allocations which are relatively favorable for
borrowers (corresponding to a low α). Suppose borrowers are very impatient, so θB is very high,
and suppose (ICS) and (ZLB) bind. Borrowers would like more date 0 consumption, but that
would tempt savers to choose the borrowers’ allocation, violating incentive compatibility. To get
more date 0 consumption, borrowers can throw away some of their date 1 consumption. (They
cannot give it to savers because (ZLB) binds.) This makes their allocation less attractive to savers,
who put a high weight on date 1 consumption, which in turn means that borrowers can get away
with higher date 0 consumption, which they value more.So if θB is sufficiently high, there are
some constrained efficient allocations in which (ZLB) and (ICS) bind but (RC1) is slack.

While I will discuss implementation below, note for now that the difference between potential
output and consumption, 2y∗ − cS

1 − cB
1 , can be interpreted as unproductive government spend-

ing. Point 5 then states that unproductive spending may be optimal, provided not only that
the economy is in a demand-driven slump (as in the standard Keynesian argument), but also
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Figure 6: Optimal allocations in (α, θB)-space

that incentive constraints prevent the government from achieving full employment with targeted
transfers alone. More generally, if I introduced government spending explicitly and allowed it to
have some value for households, it would be optimal to increase government spending above the
normal efficient level when incentive constraints bind. Intuitively, one advantage of spending on
pure public goods is that they benefit all agents equally, and do not create incentive problems.

To summarize, the optimal allocation has three important properties. First, when moving
along the Pareto frontier, in allocations which are relatively favorable for borrowers, (ICS) binds;
in intermediate allocations, neither incentive constraint binds; and in allocations which are better
for savers, (ICB) binds. Second, when differences in preferences between the two households are
large, creating a motive for borrowing, it is optimal for (ZLB) to bind. Unlike in the equilibrium
without policy, however, even when (ZLB) binds, the planner generally uses targeted transfers
to prevent unemployment. Finally, it may be constrained optimal to allow some unemployment
when (ZLB) binds, but only if (ICS) also binds, so the planner cannot give the surplus output to
B without making S prefer B’s allocation.

4.2 Implementation

Next, I consider how constrained efficient allocations can be implemented. First I show that
any solution to the Pareto problem can be implemented as an equilibrium with debt-contingent
transfers. Then I ask when it is optimal for these transfers to take the form of debt relief.

The next proposition states that any constrained efficient allocation can be implemented as
an equilibrium with debt-contingent transfers at date 1.15

15In Section (6), I show that efficient allocations can also be implemented with date 0 transfers.
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Proposition 4.2. Any solution to (7) can be implemented as an equilibrium with transfers.

Intuitively, every transfer function T(d) maps out a nonlinear budget constraint in consump-
tion space. In any constrained efficient allocation, each agent prefers her own consumption
allocation to the other agent’s allocation. The implementability problem is to construct a non-
linear budget set such that each agent prefers her own allocation to all other allocations in the
budget set.16 Figure 7 provides an illustration. cB, cS are arbitrary consumption allocations in
(c0, c1)-space satisfying incentive compatibility, so S’s allocation lies weakly below B’s indiffer-
ence curve, and vice versa. The gray line shows one particular nonlinear budget constraint which
implements this allocation. Graphically, it is clear that for any allocation, we can find some non-
linear budget set which lies below the lower envelope of both agents’ indifference curves, and
intersects the indifference curves at their intended allocations.

 

Figure 7: Implementation with debt-contingent transfers

4.3 Debt relief implements constrained efficient allocations

Next, I ask whether constrained efficient allocation can be implemented with particular simple
transfer functions.

It turns out that any constrained efficient allocation can be implemented with a piecewise
linear transfer function with at most three segments. The transfer function is one of two kinds. I
call the first a debt relief transfer function:

Definition 4.3. T(d) is a debt relief transfer function if it has the form

TDR(d; T̄,
¯
d, d̄) = −T̄ if d <

¯
d

= −T̄ + (d−
¯
d) if d ∈ [

¯
d, d̄]

= −T̄ + (d̄−
¯
d)− τ(d− d̄) if d > d̄

16There are multiple ways to do this. A trivial solution is to offer only two points in the budget set, corresponding
to the desired debt levels of S and B, and set T(d) = −∞ for all off-equilibrium levels of debt.
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where T̄ > 0,
¯
d, d̄ >

¯
d, τ are parameters.

There is a lump sum tax on all households with debt below a certain level
¯
d. The government

writes off all debt above
¯
d up to a maximum level d̄. Above that point, further borrowing is

penalized: the transfer falls by τ dollars for each dollar of debt above the maximum level d̄.17

Debt relief is offered only to borrowers with a moderate level of debt: excessive borrowing is
discouraged. Figure 8 shows the budget constraint induced by a debt relief transfer function.

Figure 8: A debt relief transfer function

The next proposition states conditions under which debt relief is Pareto optimal.

Proposition 4.4. There exists α(θB) such that

1. debt relief implements the optimal allocation iff α < α(θB).

2. If (ICS) binds, α < α(θB) and debt relief implements the optimal allocation.

First, consider a constrained efficient allocation in which S’s incentive compatibility constraint
binds. Figure 9 shows that debt relief implements such an allocation. In equilibrium, borrowers
all choose exactly the maximum level of debt. While there are other transfer schemes that might
implement allocations in which (ICS) binds, in any such scheme, T(d) must be nondifferentiable
at dB

1 , B’s equilibrium debt level. In this case, S and B’s indifference curve intersect at cB. Because
the two households have different preferences, the indifference curves have different slopes at
this point. It follows that the budget set must have a kink at cB.

17One could imagine a situation in which borrowers can verify that they have a debt, but can hide part of their debt
- if their true debt level is d > 0, they can claim to have any debt level d̃ ∈ [0, d]. In this case, it would not be possible
to offer a transfer function where T(d) is decreasing over some range. Instead, it would be necessary to combine debt
relief with a ‘macroprudential’ debt limit d ≤ d̄ at date 0.

Crucially, I assume that all asset trades are observable. If agents could engage in secret asset trades, savers could
reduce their tax burden. For example, consider two savers who save a > 0 in equilibrium, and both pay the lump
sum tax T̄. Consider the following deviation: one saver saves 3a and pays T̄, the other saver borrows a and receives a
transfer equal to T̄, and they pool their resources at each date. This deviation reduces their tax burden to zero. I rule
out such deviations by prohibiting secret asset trades.
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Figure 9: Debt relief implements allocations in which (ICS) binds

Debt relief can also be used to implement allocations in which (ICS) does not bind, but which
are still relatively favorable to borrowers. Figure 10 provides an example. In this case, it is not
strictly necessary for the transfer function to be nondifferentiable, since both agents will locate at
interior points. If the ZLB does not bind, borrowers and savers face the same interest rates in the
first period, and we can set the tax on excessive debt, τ, equal to zero. If the ZLB binds, it will in
general be necessary to tax either borrowers or savers.

Figure 10: Debt relief implements some allocations in which no ICs bind

4.4 Savings subsidies

Intuitively, it seems unlikely that debt relief implements every constrained efficient allocation.
Consider the extreme case in which α = 1, so we look for the constrained efficient allocation
which is best for the saver, ignoring the borrower’s welfare altogether. Clearly, savers have little
to gain by offering debt relief to the borrowers. If anything, they would prefer to tax borrowers,
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and transfer resources to themselves - subject to the borrowers’ incentive compatibility constraints.
In this section, I show that efficient allocations which are relatively favorable for savers can be
implemented with a subsidy to savers, as this intuition suggests.

Define savings subsidies as follows:

Definition 4.5. T(d) is a savings subsidy if it has the form

TSS(d; Ts, Tb, d∗, τ) = Tb if d > d∗

= Ts − τ(d∗ − d) if d ≤ d∗

where Ts, Tb, d∗, τ are parameters.

There is a lump sum tax on households with debt above a certain level d∗. There is a lump
sum subsidy to households with debt equal to d∗. Excessive saving is penalized by a tax τ on
saving above this level.

Proposition 4.6. 1. A savings subsidy implements the optimal allocation iff α > α(θB).

2. If (ICB) binds, α > α(θB) and a savings subsidy implements the optimal allocation.

Consider a constrained efficient allocation in which B’s incentive compatibility constraint
binds. Figure 11 shows that savings subsidies implement such an allocation. In equilibrium,
savers all choose exactly the maximum level of savings. In any transfer scheme implementing an
optimal allocation of this kind, T(d) must be nondifferentiable at dS

1 , S’s equilibrium debt level.
As in the case when (ICS) binds, S and B’s indifference curve intersect, this time at cS. Again,
because the two households have different preferences, the indifference curves have different
slopes at this point, and the budget set must be kinked at cS.

Figure 11: Savings subsidies implement allocations in which (ICB) binds
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4.5 Pareto improving debt relief

While debt relief always implements some Pareto optimal allocations, we have just seen that
savings subsidies - the opposite of debt relief - always implement efficient allocations. In what
sense is debt relief a desirable policy?

In this section, I ask whether debt relief is Pareto improving relative to the competitive equi-
librium without policy. The following proposition states that this is always the case, provided
the zero lower bound binds in equilibrium. Even if α = 1, so the planner only values S’s welfare,
there exists a debt relief policy which is welfare improving at the zero lower bound. However, if
the ZLB does not bind, debt relief is purely redistributive: it increases utility for borrowers but
reduces utility for savers.

Proposition 4.7. 1. If θB ≤ θZLB, the competitive equilibrium is Pareto optimal (it is the solution to
the planner’s problem with α = α(θB). Debt relief is not Pareto improving.

2. If θB > θZLB, the competitive equilibrium is Pareto inefficient. Debt relief is always Pareto improv-
ing.

Intuitively, suppose the zero lower bound binds in equilibrium, and date 1 consumption is
below potential output. In any competitive equilibrium, each agent strictly prefers their own
allocation to the other agent’s allocation, and both incentive constraints are slack. Suppose we
attempt to increase date 1 consumption. The savers cannot consume more, since the zero lower
bound binds. However, we can increase borrowers’ consumption by some amount before we
make savers’ incentive compatibility constraint bind. This is a Pareto improvement.

If the zero lower bound does not bind in equilibrium, the competitive equilibrium is Pareto
optimal, for the usual reasons. We already know that debt relief remains constrained efficient in
this case: relative to the competitive equilibrium, it provides higher utility to borrowers and lower
utility to savers. But it does not offer a Pareto improvement over the competitive equilibrium.

4.6 Characterizing optimal debt relief

In Section 4.5, I showed that there always exists some Pareto improving debt relief policy at the
zero lower bound. In this section, I focus on one particular Pareto improving policy, namely the
one which is most favorable to borrowers. I explain what determines the amount of debt relief
which is optimal. In Section 3 I showed that poorly designed debt relief causes overborrowing;
in this section, I explain how optimal policy avoids overborrowing.

As we have seen above, there are a continuum of constrained efficient allocations, indexed
by α, the Pareto weight on savers. I focus one one particular allocation, namely, the allocation
which maximizes borrowers’ utility, subject to the constraint that savers are no worse off than in
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the equilibrium without policy. That is, the allocation solves

max
cS

0 ,cS
1 ,cS

2 ,cB
0 ,cB

1 ,cB
2

U(cB
0 , θB) + βu(cB

1 ) +
β2

1− β
u(cB

2 ) (8)

s.t. U(cS
0 , θS) + βu(cS

1) +
β2

1− β
u(cS

2) ≥ Ū(θS, θB, φ) (US)

(RC0), (RC1), (RC2), (BC), (ZLB), (ICS)

where Ū(θS, θB, φ) is the savers’ utility in the equilibrium without policy.18 I call the solution to
this program the borrower-optimal allocation. To be clear, this always solves our original Pareto
problem (7) for some α. All the results in Sections 4 and 4.2 therefore apply.

To guarantee that borrower-optimal allocations are continuous in θB, we make the following
assumption.

Assumption 4.8. Uccθ < 0.

This is satisfied by U(c, θ) = θu(c) with u concave, and by U(c, θ) = u(c− θ) if u′′′ > 0.
The following proposition characterizes borrower-optimal allocations.

Proposition 4.9. The solution to the borrower-optimal problem is in one of five classes.

1. If the ZLB does not bind in equilibrium, the optimal allocation is the equilibrium without policy.

2. If the ZLB binds in equilibrium, and the full employment transfer is incentive compatible, i.e.

U(cS
0 , θS) + βu(c̄S

1) +
β2

1− β
u(c̄S

2) ≥ U(cB
0 , θS) + βu(2y∗ − c̄S

1) +
β2

1− β
u(c̄B

2 )

then the full employment transfer is optimal. That is, the optimal allocation is identical to the
equilibrium without policy, except that cB

1 is increased to 2y∗ − cB
1 . (US) and (RC1) bind.

If the full employment transfer is not incentive compatible, there are three possibilities. Let ĉ(θB)

solve
Uc(ĉ, θB) = Uc(ĉ, θS) + Uc(2y∗ − ĉ, θS) (9)

And let
¯
c(φ) be the smallest level of cB

0 which satisfies (ICS) and (RC1) with equality:

U(2y∗ −
¯
c, θS) + βu(c̄S

1) +
β2

1− β
u(c̄S

2) = U(
¯
c, θS) + βu(2y∗ − c̄S

1) +
β2

1− β
u(c̄B

2 )

Then:

3. If ĉ(θB) < ¯
c(φ) < cB

0 , the optimal allocation is
¯
c(φ), and (ICS) and (RC1) bind.

4. If
¯
c(φ) < ĉ(θB) < cB

0 , the optimal allocation is ĉ(θB), and (ICS) binds.

18Note that we can omit (ICB), since we are trying to maximize the borrowers’ utility.
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5. If
¯
c(φ) < cB

0 < ĉ(θB), the optimal allocation is cB
0 , and (ICS) and (US) bind.

When the ZLB is slack, this allocation is identical to the equilibrium, since the equilibrium is
already efficient, and there is no policy. When the ZLB binds, Proposition 4.7 implies that the
borrower-optimal allocation involves debt relief.

Even when the full employment transfer is not incentive compatible, it is still possible to
increase borrowers’ date 1 consumption until (ICS) binds. In fact, it is sometimes possible to do
even better, as Figure 12 illustrates. When (ICS) binds, we can increase cB

1 further by reducing
cB

0 and increasing cS
0 , to keep savers indifferent between their own allocation and the borrowers’

allocation. This can be implemented by reducing the borrowers’ debt, i.e. setting the cap on debt
relief, d̄, below the level of debt in the equilibrium without policy.

 

Figure 12: Borrower-optimal policy reduces cB
0

When is it optimal to reduce debt in this way? When borrowers are not too impatient (θB

is not too high), the gains from higher date 1 consumption outweigh the cost of lower date 0
consumption. When θB is slightly higher, it is optimal to reduce debt to some extent, but not all
the way to full employment. Finally, if borrowers are sufficiently impatient, it is never optimal to
reduce debt in return for higher date 1 consumption.

In section 3, I showed that debt relief can induce overborrowing, on both the intensive and
extensive margins. On the intensive margin, debt relief increases borrowers’ lifetime wealth.
Absent any change in interest rates, this increase in wealth would induce borrowers to consume
more at date 0, which would mean that savers consume less in equilibrium, making savers worse
off. On the extensive margin, debt relief might induce some households who would otherwise
save, to borrow instead, in order to qualify for this transfer.

The optimal debt relief policy avoids both these pitfalls. To prevent overborrowing on the
intensive margin, the optimal policy requires a wedge τ between the shadow interest rates faced
by borrowers and savers, as the following proposition states.
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Proposition 4.10. Define the wedge

τ :=
Uc(cB

0 , θB)

Uc(cS
0 , θS)

u′(cS
1)

u′(cB
1 )
− 1.

If cS, cB is Pareto improving relative to the equilibrium without policy, τ > 0.

A positive wedge τ > 0 increases the effective marginal interest rate faced by borrowers at
date 0, making them borrow less. As I showed in Section 4.2, this wedge can be implemented
by making debt relief conditional on having a relatively moderate level of debt, below some
maximum d̄. Above d̄, an additional dollar of debt reduces the transfer that households receive
by τ dollars.19 Making debt relief conditional prevents borrowers from borrowing more than
they would have done in the equilibrium without policy.

Optimal policy avoids overborrowing on the extensive margin in two ways: by keeping T
at a moderate level, and by lowering debt. Conditional debt relief can reduce equilibrium debt
by setting d̄ lower than the equilibrium level of debt, and charging a high tax on debt above d̄.
However, this is not optimal for borrowers if they are too impatient. In this case, the only way to
prevent overborrowing is to keep T below the level required for full employment.

5 Optimal policy with a continuous distribution of types

A concern with the model presented above is that incentive compatibility conditions are not too
demanding when there are only two types. The planner can always design allocations in which
no agent strictly prefers to mimic another agent’s allocation. In this sense, it is possible to provide
debt relief without encouraging any agents to overborrow. With a distribution of types, any debt
relief policy will always induce some agent to borrow more. Debt relief may still be optimal, but
the planner must now trade off the benefits of debt relief against the cost of distorting incentives
towards overborrowing. Does the striking result presented above - that some debt relief is always
Pareto improving when the zero lower bound binds - still hold?

To answer this question, I modify the model to include a continuous distribution of types.

Agents have date 0 preferences U(c, θ) = θu(c), with u(c) =
c1−σ

1− σ
. θ has a continuous density

f (θ) with support Θ = [
¯
θ, θ̄]. Equilibrium is defined as before.

As in the discrete type economy, the ZLB binds in equilibrium if agents are sufficiently impa-
tient. Index households by i ∈ [0, 1], and let θ(i) = F−1(i) be the type of household i, so the most
patient agent is 0, and he has type

¯
θ. The following proposition states that if we make each of the

remaining agents i > 0 sufficiently impatient, then the ZLB binds in equilibrium: the impatient
households borrow so much that the patient households accumulate large savings, and it would
take a negative real interest rate at date 1 to make them consume all their wealth.

19Any tax greater than or equal to τ would suffice.
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Proposition 5.1. Take any sequence of functions θN : [0, 1] → [1, ∞) such that for all N = 0, 1, ...
θN(0) =

¯
θ, θN is increasing, and for all i ∈ (0, 1], θN(i) → ∞ as N → ∞. There exists N∗ such that

r1 < 0 if N > N∗. Informally, the ZLB binds if agents’ types are high enough.

When the ZLB binds, equilibrium consumption falls below potential output, and it would be
ex post Pareto improving to transfer wealth from the most patient household, whose consump-
tion is limited by the ZLB, to an impatient household, who is liquidity constrained. As in the
discrete type economy, such a transfer may not be incentive compatible. In fact, incentive com-
patibility is a much stronger constraint in the continuous type economy. Any transfer targeted
at high θ individuals will induce some households with slightly lower θ to borrow more. To put
this another way, any debt relief policy induces some overborrowing on the extensive margin, as
well as overborrowing on the intensive margin.

5.1 Pareto problem

I now proceed to set up the Pareto problem in the continuous type economy. It is useful to write
this problem in terms of households’ compensated demand functions, which I now define.

Define the date 1 expenditure function to be

E(v1, r1) = min
c1,c2

c1 +
c2

(1 + r1)(1− β)
(EMP)

s.t. u(c1) +
β

1− β
u(c2) ≥ v1

c2 ≥ ¯
c2φ

where
¯
c2 = y∗ − (1 − β)φ. Let C1(v1, r1), C2(v1, r1) be the solutions to this cost minimization

problem.
These compensated demand functions will enter the Pareto problem: the planner will choose

the value v1(θ) to provide to each type, and the resource cost of providing this value at dates
1 and 2 will be C1(v1, r1), C2(v1, r1). It will be more intuitive, however, to relate the first order
conditions of the planner’s problem to the Marshallian uncompensated demand functions, which
I now define. Let the date 1 value function to be

V(a1, r1) = max
c1,c2

u(c1) +
β

1− β
u(c2) (UMP)

s.t. c1 +
c2

(1 + r1)(1− β)
≤ a1

c2 ≥ ¯
c2

Let X1(a1, r1), X2(a1, r1) be the solutions to this utility maximization problem. The following
results are, for the most part, standard.

Lemma 5.2. 1. Convexity. E is convex in v1. V is concave in a1.
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2. Duality. E(V(a1, r1), r1) = a1. V(E(v1, r1), r1) = v1. Ct(v1, r1) = Xt(E(v1, r1), r1), t = 1, 2.

3. Envelope theorem. Va(a1, r1) = u′(c1).

4. Marginal cost of utility and MPC.
∂Ct(v1, r1)

∂v1
=

∂Xt(E(v1, r1), r1)/∂a1

u′(c1)
, t = 1, 2.

5. Borrowing constraint eventually binds. There exists v̄1(r1) such that

C2(v1, r1) = ¯
c2 if v1 ≤ v̄1(r1).

There exists ā1(r1) = E(v̄1(r1), r1) such that

X2(a1, r1) = ¯
c2,

∂X1

∂a1
= 1,

∂X2

∂a1
= 0 if a1 < ā1(r1)

6. Unconstrained CRRA households have constant MPC. If u(c) =
c1−σ

1− σ
, then if a1 > ā1(r1),

∂X1

∂a1
=

1− β

1− β + β1/σ(1 + r1)
1
σ−1

7. Convex savings function. If X1(a1, r1) is concave in a1, C2(v1, r1) is convex in v1. A sufficient

condition for this is that u(c) =
c1−σ

1− σ
.

With these definitions in hand, I consider the social planner problem. The social planner
puts weight a(θ) on type θ households. As before, the planner faces resource and incentive
compatibility constraints. Now, however, the borrowing constraint and the constraints imposed
by liquidity unconstrained households’ Euler equations are embodied in the Hicksian demand
functions in constraints (RC1) and (RC2). I write the zero lower bound constraint (ZLB) explicitly
as a constraint on the real interest rate.

max
c0,v1,r1

∫
a(θ) [θu(c0(θ)) + βv1(θ)]dθ (PP)

s.t.
∫

c0(θ) f (θ)dθ ≤ y∗ (RC0)∫
C1(v1(θ), r1) f (θ)dθ ≤ y∗ (RC1)∫
C2(v1(θ), r1) f (θ)dθ ≤ y∗ (RC2)

θu(c0(θ)) + βv1(θ) ≥ θu(c0(θ̂)) + βv1(θ̂), ∀θ, θ̂ (IC)

r1 ≥ 0 (ZLB)

First I transform this problem into an equivalent, concave programming problem; I then
characterize solutions to the problem using Lagrangian theorems.20 It is convenient to work

20The Lagrangian optimization approach used here follows that of Amador et al. [2006].
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in terms of utilities, rather than consumption allocations. Define the convex, increasing cost of
utility function C0(u0) = u−1(u0), and the date 0 value function v(θ) = θu0(θ) + βv1(θ). It is
possible to express the incentive compatibility constraint (IC) as an integral condition, using the
result of Milgrom and Segal [2002]. u0, v1 satisfies (IC) if and only if

v(θ) = v(
¯
θ) +

∫ θ

¯
θ

u0(z)dz (10)

and u0 is nondecreasing.
Instead of choosing functions u0 and v1, we can equivalently choose a function u0 and a scalar

¯
v := v(

¯
θ), subject to the constraint that u0 ∈ Ω, the space of nondecreasing functions. v, v1 are

then implicitly defined by

v(θ) =
¯
v +

∫ θ

¯
θ

u0(z)dz

v1(θ) = β−1[
¯
v +

∫ θ

¯
θ

u0(z)dz− θu0(θ)]

The objective function can be rewritten as∫
a(θ)v(θ)dθ =

¯
v +

∫
(1− A(θ))u0(θ)dθ

where A(θ) :=
∫ θ

¯
θ a(z)dz, and I normalize

∫ θ̄

¯
θ a(θ)dθ = 1.

Putting all this together, we can rewrite the social planner’s problem as

W∗ = max
u0∈Ω,

¯
v,r1 ¯

v +
∫
(1− A(θ))u0(θ)dθ (PP’)

s.t
∫

C0(u0(θ)) f (θ)dθ ≤ y∗ (RC0’)∫
C1

(
β−1

[
¯
v +

∫ θ

¯
θ

u0(z)dz− θu0(θ)

]
, r1

)
f (θ)dθ ≤ y∗ (RC1’)∫

C2

(
β−1

[
¯
v +

∫ θ

¯
θ

u0(z)dz− θu0(θ)

]
, r1

)
f (θ)dθ ≤ y∗ (RC2’)

r1 ≥ 0 (ZLB)

5.2 Necessary and sufficient conditions

It is now almost possible to apply Lagrangian theorems to (PP’). There are two remaining prob-
lems. First, the date 1 consumption function C1(v1, r1) is not convex in v1: it has a kink at v̄1(r1).
Second, the consumption functions need not be convex in r1. In the following proposition, I show
that it is nonetheless possible to use Lagrangian methods.

Proposition 5.3. u0,
¯
v, r1 solves (PP’) if and only if there exist Lagrange multipliers λ0, λ1, λ2 such that

30



u0,
¯
v solve

W∗ = max
u0∈Ω,

¯
v¯
v +

∫
(1− A(θ))u0(θ)dθ − λ0

∫
C0(u0(θ)) f (θ)dθ (11)

−
∫

M
(

β−1
[

¯
v +

∫ θ

¯
θ

u0(z)dz− θu0(θ)

]
|λ1, λ2, r1

)
f (θ)dθ

where
M(v1|λ1, λ2, r1) := λ1C1(v1, r1) + λ2C2(v1, r1)

and the Lagrange multipliers satisfy the following conditions. If the ZLB is slack,
λ1

λ2
= (1 + r1)(1− β).

If the ZLB binds,
λ1

λ2
< 1− β.

Before providing a sketch of the proof, I explain how to interpret the function M. M(v1|λ1, λ2, r1)

represents the total social cost of providing date 1 utility v1 to a household, given that the house-
hold will choose its spending at dates 1 and 2 according to the interest rate r1, and given that
the social planner’s shadow price of date 1 and date 2 output are λ1 and λ2 respectively. When
λ1

λ2
= (1 + r1)(1− β), the relative shadow price of date 1 and 2 output, from the planner’s per-

spective, is the same as the relative price of output faced by agents. In this case, M is simply
a rescaled version of the expenditure function M = λ1E(v1, r1). Proposition 5.3 states that the
planner sets interest rates to equalize the private and social relative price of output, whenever
this is not prevented by the ZLB.

However, when
λ1

λ2
< (1 + r1)(1 − β), the planner perceives that date 1 output is socially

cheaper than date 2 output - the economy is in recession at date 1 - but private agents do not
internalize this, because the relative price of date 1 output is still too high, because of the ZLB.
This provides a motive for the planner to redistribute utility towards households with a higher
propensity to spend at date 1 consumption, when consumption is socially cheap. In this econ-
omy, households with relatively low date 1 utility and wealth (i.e. with v1 ≤ v̄1) have a higher
propensity to spend at date 1. In fact, their consumption functions are kinked at v̄1, which means
that M is kinked at v̄1. Given that some households have date 1 utility v1(θ) below v̄1, the planner
would like v1(θ) to be relatively high, since it is relatively cheap to supply this utility. As a result,
it may be optimal to redistribute towards households with a higher propensity to consume date
1 consumption (which is socially cheap), or to give those households incentives to save at date
zero so they have more wealth to spend at date 1.21

The proof of Proposition 5.3 has six steps. First we show that solutions to (PP’) also solve a
modified problem in which we replace the date 1 resource constraint with the aggregate expen-
diture function. Second, the modified problem can be solved in two stages: first maximize social
welfare given r1, yielding welfareW(r), and then choose r to maximizeW(r) subject to the ZLB.

21This is exactly the result of Farhi and Werning [2013]. Relative to their framework, however, here the social
planner faces additional incentive compatibility constraints resulting from private information, which make it harder
to redistribute.
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Third, the first stage of this problem is concave, and Lagrangian theorems (Luenberger [1969])
apply. Fourth, we can also express the expenditure functions as maximized sub-Lagrangians.
Substituting these sub-Lagrangians into the main Lagrangian, we see that W(r) is also the maxi-
mum of an expanded Lagrangian. Fifth, returning to our two stage problem, we can switch the
order of maximization, first choosing r to minimize a certain function, subject to the ZLB, and
then choosing utilities to maximize social welfare. Sixth, and finally, I show that when the ZLB
is slack, one constraint in the planner’s problem becomes slack, and the expanded Lagrangian is

equivalent to (11), with
λ1

λ2
= (1 + r1)(1− β). When the ZLB binds, we have

λ1

λ2
< 1− β.

It is possible to express necessary and sufficient conditions for an optimum in terms of
Gateaux differentials of the Lagrangian.22 Before doing so, it is first necessary to show that
these differentials can be computed.

Lemma 5.4. The Gateaux differential of the Lagrangian (11) is

δL(u0,
¯
v; ∆0,

¯
∆) =

¯
∆ +

∫
(1− A(θ))∆0(θ)dθ − λ0

∫
C′0(u0(θ))∆0(θ) f (θ)dθ

−
∫

Θ+

M′+(v1(θ)|λ1, λ2, r1)β−1
[

¯
∆ +

∫ θ

¯
θ

∆0(z)dz− θ∆0(θ)

]
f (θ)dθ

−
∫

Θ−
M′−(v1(θ)|λ1, λ2, r1)β−1

[
¯
∆ +

∫ θ

¯
θ

∆0(z)dz− θ∆0(θ)

]
f (θ)dθ

where v1(θ) = β−1
[

¯
v +

∫ θ

¯
θ u0(z)dz− θu0(θ)

]
, and

Θ+ =

{
θ ∈ Θ :

¯
∆ +

∫ θ

¯
θ

∆0(z)dz− θ∆0(θ) > 0
}

Θ− =

{
θ ∈ Θ :

¯
∆ +

∫ θ

¯
θ

∆0(z)dz− θ∆0(θ) < 0
}

Putting all these results together, we can now characterize constrained efficient allocations in
terms of first order conditions.

Lemma 5.5. u0,
¯
v, r1 solves (PP’) if and only if there exist Lagrange multipliers λ0, λ1, λ2 such that, for

all
¯
∆, ∆0 such that u0 + ∆0 ∈ Ω,

δL(u0,
¯
v; ∆0,

¯
∆) ≤ 0

where δL(u0,
¯
v; ∆0,

¯
∆) is defined as in Lemma 5.4, and the Lagrange multipliers satisfy the following

conditions. If the ZLB is slack,
λ1

λ2
= (1 + r1)(1− β). If the ZLB binds,

λ1

λ2
< 1− β.

22Given a real valued functional f defined on a vector space X, if the limit

lim
α↓0

1
α
[ f (x + αh)− f (x)]

exists, then it is called the Gateaux differential of f at x with increment h and is denoted by δ f (x; h).
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5.3 Constrained efficient debt relief

I now show that the main results from the two type economy considered above generalize to
a continuous distribution of types. When the ZLB binds in the equilibrium without policy, the
equilibrium is constrained inefficient. Somewhat surprisingly, the simple, piecewise linear debt
relief transfer functions which implemented optimal allocations in the two type economy also
implement some (but by no means all) optimal allocations with a continuous distribution of
types. In particular, if a debt relief transfer function has a positive marginal tax above the cap
τ > 0, and implements full employment, then it is constrained efficient.

Proposition 5.6. If the ZLB binds in the equilibrium without policy:

1. The equilibrium is constrained inefficient.

2. Debt relief transfer functions with τ > 0 implementing full employment allocations are constrained
efficient.

If the ZLB is slack, the equilibrium is constrained efficient.

A sketch of the proof of part 1 is as follows. Suppose by contradiction that a competitive
equilibrium in which the ZLB binds, and the date 1 resource constraint is slack, is constrained
efficient. Consider the following deviation: make a small transfer to households whose date 0
consumption is such that they are ‘just’ borrowing constrained. Households with slightly higher
date 0 consumption will consume less at date 0, and more at date 1, to qualify for the transfer;
households with slightly lower date 0 consumption will consume more at date 0, and less at
dates 1 and 2. To first order, the effect on date 0 consumption cancels out, but aggregate date
1 consumption increases, and date 2 consumption falls. This is clearly feasible, since the date 1
resource constraint is slack, and it increases utility for the households who change their behavior.
Thus the original allocation cannot have been constrained efficient.

To show that debt relief transfer functions with τ > 0 implement constrained efficient alloca-
tions, two steps are necessary. First, it is necessary to show that such allocations exist. The proof
proceeds by showing that aggregate consumption demand at dates 0,1 and 2 is a continuous
function of the parameters of the debt relief transfer function, T̄,

¯
d, d̄ and τ. A fixed point argu-

ment then shows that there exists a transfer function implementing a full employment allocation.
Second, it is necessary to show that such allocations, if they exist, are constrained efficient. The
proof proceeds by showing that the allocations satisfy the condition in Lemma 5.5.

5.4 How the optimal policy prevents overborrowing

Debt relief encourages overborrowing on the intensive margin, inducing borrowers who had
enough debt to qualify for the transfer, even in the equilibrium without policy, to borrow and
consume more through a wealth effect. In addition, any debt relief policy induces some overbor-
rowing on the extensive margin. That is, if households with higher debt receive a higher transfer,
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some households will take on more debt in order to benefit from this transfer. This was not true
in the two type economy: in that economy, there was always some room to give borrowers a
transfer without encouraging savers to overborrow.

Figure 13 illustrates. Although there are a continuum of types, to simplify the figure I only
show the indifference curves of two types, θM and θB > θM. Suppose households’ debt is written
off one-for-one in some range, shifting the budget set to the right as shown in the figure. This
induces some households to increase their date zero consumption and borrowing. For high types
like θB, debt relief acts through a wealth effect, and these types increase their date 0 and date
1 consumption. Intermediate types like θM, however, will borrow up to the kink in the budget
constraint. Thus there is overborrowing on both an intensive and an extensive margin. Finally,
there are some more patient types who are not affected by the policy.

 

Figure 13: Debt relief induces intensive and extensive margin overborrowing

The budget set shown in 13 does not implement a feasible allocation, since aggregate date
0 consumption has increased and markets do not clear. To prevent overborrowing, and clear
markets, the government can tax borrowing above the cap at rate τ > 0. This reduces the date
0 consumption and borrowing of the most impatient households, such as θB. That is, this debt
relief policy reduces the debt of extreme borrowers, through a marginal tax on debt, to balance
out the overborrowing of moderate borrowers such as θM. Figure 14 illustrates.

By increasing the transfer to moderate borrowers, and increasing the tax on extreme bor-
rowers to ensure markets clear at date 0, it is always possible to return the economy to full
employment at date 1. However, the further the economy is from full employment, the larger
the transfer required to return it to full employment, and the higher the marginal tax on debt
required to balance out the overborrowing induced by this transfer. It is possible that the tax
on debt required to prevent overborrowing is so high that some impatient types (such as θB) are
made worse off by this policy. Debt relief transfer functions which implement full employment
are always constrained efficient, but they may not be Pareto improving. Figure 15 illustrates such
a case.
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Figure 14: τ prevents overborrowing

 

Figure 15: Debt relief transfer function may not be Pareto improving

5.5 Numerical exercise

How large are the optimal transfer and the marginal debt tax τ likely to be? Is linear debt relief
policy likely to be Pareto improving? In this section I present a numerical exercise to give a rough
answer to these questions.

I interpret 1 period as 5 years. θ is lognormal, with ln θ ∼ N (µθ , σ2
θ ). I set β = 0.975,

corresponding to a steady state real interest rate of 0.5%. I set φ = 0.2. I then vary σ, the inverse
of the intertemporal elasticity of substitution, and choose µθ , σ2

θ to roughly match the 2008-2012
fall in output and deleveraging, and the 2007 distribution of debt, in the United States.

Potential output y∗ is normalized to 1. The first variable to compare to the data is y1, the
shortfall in output relative to potential output. I measure potential output by fitting either a
linear trend or an exponential trend to 1984-2007 real GDP. I then measure y1 as the average
value of annual output divided by potential output over 2008-2012. Using a linear trend, this
yields y1 = 0.95; using an exponential trend yields y1 = 0.90. In the table below, I report a simple
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average of these, y1 = 0.92.
Data on aggregate household debt comes from the Financial Accounts of the United States. I

divide total household debt by 5 times trend annual GDP. Since I interpret the crisis period t = 1
as 2008-2012, I interpret aggregate debt at date 1, D1 =

∫
di

11{di
1 ≥ 0}di as household debt in

2008, and aggregate debt at date 2, D2 =
∫

di
21{di

2 ≥ 0}di as household debt in 2012. This yields
D1 = 0.19, D2 = 0.14.

Data on the distribution of debt comes from the 2007 Survey of Consumer Finances. I restrict
the sample to heads of household aged between 25 and 65 who are not students and who are not
retired. I interpret di

t in the model as total household debt minus financial assets, divided by 5
times the average family income for households in the sample.23. As explained above, whether
simple linear debt relief policies are Pareto improving depends crucially on the right tail of the
distribution of debt. I therefore attempt to roughly match the 90th percentile of the distribution
of the debt.

To solve the model, I approximate the distribution of types as a discrete type economy with
500 types, using an unequally spaced grid for θ. I truncate the distribution of θ, setting

¯
θ = 0.05,

θ̄ = 20. For each set of parameter values, I first verify that the ZLB binds in equilibrium, then
search for the debt relief transfer policy that ensures full employment at date 1, while keeping
the date 0 rate of interest, 1 + r0, the same as in the equilibrium without policy. In what follows,
I call this the ‘optimal policy’, but it is important to bear in mind that there are a large set of
constrained efficient policies, and this is only one of them.

Table 1: Optimal policy
Parameters Moments Policy
σ µθ σθ y1 D1 D2 p90 T̄

¯
d d̄ τ

0.5 0.1 0.3 0.94 0.16 0.11 0.46 0.00 0.15 0.17 0.16
1 0.5 0.5 0.92 0.16 0.11 0.44 0.02 0.16 0.20 0.53
2 1 1 0.93 0.14 0.10 0.40 0.03 0.16 0.23 1.66

Data
0.92 0.19 0.14 0.42

Table 1 presents the results. The maximum transfer is 2− 4% of 5 years’ income, or $8, 000−
16, 000. The marginal tax above the cap is a 3− 33% annual spread: it is higher if the IES,

1
σ

, is
low.

Next, I evaluate the welfare effect of these policies. Following Lucas [1987], define the welfare
benefit of debt relief for type θ, λ(θ), as the percentage increase in consumption, in every period
t, such that household θ would be indifferent between the equilibrium without policy (plus the
percentage increase in consumption) and the equilibrium with policy. Let c∗t denote allocations

23The SCF collects data from two samples: a standard multistage area-probability sample selected from the 48
contiguous US states, and a list sample designed to disproportionately sample wealthy families. The SCF provides
probability weights which account for the sample design, and also for differential patterns of non-response among
families with different characteristics. All SCF data presented here is weighted using these probability weights.
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in the equilibrium without policy, and c∗∗t allocations in the equilibrium with policy. For each
type θ, λ(θ) solves

θu(c∗∗0 (θ)) +
∞

∑
t=1

βtu(c∗∗t (θ)) = θu((1 + λ(θ))c∗0(θ)) +
∞

∑
t=1

βtu((1 + λ(θ))c∗t (θ))

Figure 16 plots λ(θ), for σ = 0.5, 1, 2. Since the distribution of types is different under the three
experiments, I plot λ(θ) against F(θ), the rank of type θ in the whole distribution. In each case,
the optimal debt relief policy increases welfare for most households, particularly for ‘moderate’
types with intermediate values of θ. However, the optimal policy is never Pareto improving:
extremely high types are made worse off by debt relief with a cap. These households have an
extremely high demand for date 0 consumption; anything that reduces date 0 consumption, such
as a marginal tax on debt, makes them worse off.
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Figure 16: Consumption equivalent gains under optimal debt relief

This result should be interpreted with caution, for two reasons. First, the exercise here is
to interpret the empirical distribution of debt in 2007 through the lens of a model in which all
households started with zero debt in 2002, and in some cases took out large amounts of debt,
knowing with certainty that the financial crisis would happen in 2008, and they would be forced
to deleverage. Clearly, such a model requires substantial dispersion in preferences θ to generate
the significant wealth inequality observed in the data. In reality, households did not expect the
crisis to happen with probability one; had they done so, they would surely have taken out less
debt. Second, under the more realistic assumption that households do not expect the crisis to
happen for sure (which I consider in Section 7.1 below), the incentive problems associated with
debt relief are less severe, and it is easier to find an ex ante Pareto improving policy. In the
extreme case, if the crisis is a zero probability event, there are no incentive concerns associated

37



with debt relief. For both these reasons, one should not necessarily conclude that it is hard to
design Pareto improving debt relief policies.

However, Figure 16 does highlight that any policy to reduce overborrowing runs the risk of
harming households who need to borrow.24 This risk is even greater for alternative macropru-
dential policies, which attempt solely to prevent overborrowing, as I discuss in section 6 below.
Debt relief with a cap is less of a culprit in this regard, since it combines a transfer to indebted
households with a marginal tax to reduce their borrowing.

6 Macroprudential policy

In this section I compare debt relief to macroprudential policies. Korinek and Simsek [2014]
and Farhi and Werning [2013] have discussed the role of taxes on overborrowing, debt limits,
and insurance requirements in preventing liquidity traps. Such macroprudential policies prevent
overborrowing ex ante, while debt relief corrects overborrowing ex post. Korinek and Simsek
[2014] and Farhi and Werning [2013] both consider optimal policy in the case when the planner
can observe households’ type. In contrast, I assume that type is private information.

6.1 Macroprudential policy with full information

Is macroprudential policy superior or inferior to debt relief, or are the two policies equivalent?
To answer this question, I define equilibrium with two macroprudential policies considered by
Korinek and Simsek [2014] and Farhi and Werning [2013] which are an alternative to debt relief:
debt limits with compensating transfers at date 0, and linear debt taxes and transfers at date 1. I
allow transfers and taxes to depend on an agent’s type.

Definition 6.1. An equilibrium with macroprudential taxes is a ZLB-constrained equilibrium with
transfers in which transfer functions have the form T(d, θ) = T1(θ)− τ(θ)d.

An equilibrium with debt limits is {ci
t, di

t, yt, rt} such that, given a date 0 debt limit φ0 and date 0
transfers T0(θ),

1. each household i chooses {ci
t, di

t} to maximize (1) s.t. (2), (4), and

di
0 = −T0(θi)

di
1 ≤ φ0

2. cB
t + cS

t = 2yt

3. rt ≥ 0, yt ≤ y∗, rt(y∗ − yt) = 0

Farhi and Werning [2013] and Korinek and Simsek [2014] show that these macroprudential
policies implement first-best allocations when household type is observable to the planner. The
following proposition merely restates their result.

24As Zinman [2014] emphasizes, we still understand little about why some households borrow as much as they do.
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Proposition 6.2. Consider the relaxed Pareto problem without constraints (ICS) and (ICB).

1. Every solution to the relaxed Pareto problem can be implemented as an equilibrium with macropru-
dential taxes. If the ZLB does not bind, τ(θS) = τ(θB) = 0. If the ZLB binds,

1 + τ(θB)

1 + τ(θS)
=

u′(cS
1)

u′(cB
1 )

Uc(cB
0 , θB)

Uc(cS
0 , θS)

> 1 (12)

In particular, the optimal allocation can be implemented with a tax on debt targeted only at borrowers
(τ(θB) > 0, τ(θS) = 0).

2. Every solution to the relaxed Pareto problem can be implemented as an equilibrium with debt limits.
If the ZLB binds, then the debt limit binds, and it is equal to

φ0 = d̄1 := c̄S
1 − y∗ + φ (13)

Since these transfers depend on a household’s type θ, they cannot be implemented when θ

is private information. Next, I study macroprudential policies under private information, and
compare them to the ex post policies considered throughout the paper. Once we restrict the sim-
ple linear taxes and transfers considered in Proposition 6.2 to be anonymous, macroprudential
taxes are sub-optimal, and debt limits only implement particular optimal allocations. However,
modified macroprudential policies with nonlinear taxes and transfers are equivalent to ex post
policies, and implement optimal allocations. Thus the results in Sections 4 and 4.2 can also be
interpreted as describing optimal macroprudential policy under private information.

6.2 Macroprudential taxes

First, I study macroprudential taxes under private information. Under full information, linear
debt taxes implement optimal allocations, and satisfy equation (12) (only borrowers face a tax on
debt). Under private information, linear debt taxes are not optimal. Nonlinear debt taxes imple-
ment optimal allocations, since they are equivalent to the debt-contingent transfers considered
throughout this paper; however optimal marginal tax rates may not satisfy equation (12).

Anonymous linear taxes on debt which do not depend on a household’s type are redundant:
they change the equilibrium interest rate, but implement the same allocations as an equilibrium
without policy.25 To see this, note that taxes only enter households’ Euler equations:

(1 + r0)(1 + τ) =
Uc(ci

0, θi)

βu′(ci
1)

If τ is increased, r0 falls to clear markets, and the equilibrium is unchanged. When this equilib-
rium is inefficient, anonymous linear taxes fail to implement optimal allocations.

25This is noted by Farhi and Werning [2013] who emphasize that only the relative financial taxes faced by different
agents affect the allocation: the average level of taxes is indeterminate.
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If anonymous macroprudential taxes are to implement optimal allocations, they must be
nonlinear. Nonlinear taxes on debt are equivalent to the debt-contingent transfers considered
throughout this paper, and implement the same allocations. All the results above about optimal
debt-contingent transfers can be interpreted in terms of nonlinear macroprudential taxes. Equa-
tion (12), which describes the optimal marginal debt tax under full information, must now be
modified to take into account incentive constraints. We can interpret −T′(d) as the analogue of
τ, the marginal tax on debt. (The negative sign is present because T(d) > 0 denotes a positive
transfer, whereas τ > 0 denotes a positive tax on debt.)

Proposition 6.3. 1. If (ZLB), (ICS) and (ICB) do not bind, T′(dS
1) = T′(dB

1 ) = 0.26

2. If (ZLB) binds and neither incentive constraint binds, T′(dS
1) > T′(dB

1 ).

3. If (ZLB) does not bind and either (ICS) or (ICB) binds, T′(dS
1) < T′(dB

1 ).

4. If (ZLB) binds and either (ICS) or (ICB) binds, we may have T′(dS
1) < T′(dB

1 ), T′(dS
1) > T′(dB

1 ),
or T′(dS

1) = T′(dB
1 ) = 0.

If neither incentive constraint binds, and (ZLB) binds, we want to induce borrowers to take
on less debt, since excessive debt imposes a macroeconomic externality. To do this, we impose a
marginal tax on debt, as in the case with linear macroprudential taxes and perfect information.
However, when incentive constraints bind, marginal taxes play a different role: they make the
allocations of savers and borrowers different, so that savers do not want to mimic borrowers (or

vice versa). If for example (ICS) binds, we distort allocations so that
βu′(cS

1)

Uc(cS
0 , θS)

<
βu′(cB

1 )

Uc(cB
0 , θB)

.

Absent incentive constraints, it would be Pareto improving to have B consume more at date 1,
and have S consume more at date 0. But this would make B’s allocation more attractive to S, who
values date 1 consumption more. To deter S, who prefers later consumption, from mimicking B,
optimal policy front-loads B’s consumption by offering him a lower marginal interest rate than
S, or a negative marginal tax on debt. When both (ZLB) and one incentive constraint bind, both
motives are in play, and the sign of the marginal tax on debt is ambiguous.

6.3 Debt limits and date 0 transfers

Next, I consider debt limits under private information. Under full information, debt limits to-
gether with compensating transfers implement optimal allocations, and satisfy equation (13)
(debt is low enough to ensure full employment). Under private information, debt limits imple-
ment one particular optimal allocation, which may not be Pareto improving. A modified version
of the debt limit policy, with debt-contingent date 0 transfers, implements any optimal allocation.
However, the optimal debt limit may not satisfy equation (13).

If transfers do not depend on a household’s type, they must be equal to zero, under our
maintained assumption that the government runs a balanced budget. A debt limit without any

26T′(d) denotes either the left-hand derivative or the right-hand derivative of T(d); as noted above, allocations in
which an incentive constraint binds cannot be implemented with a differentiable value function.
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compensating transfer implements one particular constrained efficient allocation. This policy is
better for savers, and worse for borrowers, relative to debt relief. It is always Pareto efficient,
but it may not be Pareto improving relative to the equilibrium without policy. If borrowers are
sufficiently impatient, they will be worse off with debt limits than in the equilibrium without
policy: the cost of lower date 0 consumption outweighs the benefit of higher date 1 consumption.

Debt limits therefore appear to be more restrictive than debt-contingent transfers. However,
if we allow the date 0 compensating transfers to depend on debt, debt limits implement the same
set of allocations as date 1 debt-contingent transfers.

Proposition 6.4. 1. Every constrained efficient allocation can be implemented as an allocation with
debt limits and date 0 debt-contingent transfers. The debt limit may be greater than d̄1 if (ICS)
binds.

2. A debt limit φ0 = d̄1, together with no transfer at date 0 (T0(d) = 0), implements constrained
efficient allocations corresponding to a weight of ᾱ(θB) in the social planner’s problem.

3. There exists θ̄ such that this allocation is not Pareto-improving, relative to the equilibrium without
policy, if θB > θ̄.

4. If the ZLB binds, the debt limit is always binding and equal to d̄1, unless (ZLB) and (ICS) both bind.
In this case, dB

1 > d̄1, and there is underemployment at date 1.

Part 1 of this Proposition states that date 0 transfers and date 1 transfers are equivalent:
either policy defines a nonlinear mapping from date 0 consumption to date 1 consumption. Part
2 states that a debt limit without compensating transfers is Pareto efficient at the ZLB. However,
part 3 states that this allocation is not Pareto improving if θB is sufficiently large. A binding
debt limit reduces borrowers’ date 0 consumption, but increases date 1 consumption. If B is
sufficiently impatient, a fall in date 0 consumption is very costly, and the binding debt limit
reduces her welfare (although it increases S’s welfare). Similarly, part 4 notes that some Pareto
efficient allocations in which the ZLB binds cannot be implemented with a debt limit equal to d̄1.
These are the efficient allocations in which there is underemployment, and cS

1 + cB
1 < 2y∗.27

Date 0 transfers are equivalent to date 1 transfers, and can be used to induce exactly the same
budget sets. In particular, we can construct date 0 transfer functions which induce exactly the
same budget sets as debt relief transfer functions. These date 0 transfers can be interpreted as
targeted loan support programs, combined with macroprudential taxes on excessive borrowing.

Definition 6.5. T0(d) is a targeted loan support program if it has the form

TLS(d) = −T̄ if d < d∗

= T∗ − τd if d ≥ d∗

where T∗, T̄ > 0, d∗, τ are parameters.

27As discussed in Section 4, when (ICS) and (ZLB) both bind, some date 1 unemployment may be optimal.
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There is a lump sum tax T̄ on all households who borrow less than a certain amount d∗.
The government gives a subsidy of T∗ to households who borrow exactly d∗. Above that point,
further borrowing is penalized: the transfer falls by τ dollars for each dollar of debt above the
minimum level d∗.

Given that targeted loan support programs are isomorphic to debt relief transfer functions,
the following result follows immediately from Propositions 4.4 and 4.7.

Proposition 6.6. 1. Targeted loan support implements the optimal allocation iff α < α(θB).

2. If (ICS) binds, α < α(θB) and targeted loan support implements the optimal allocation.

3. If θB ≤ θZLB, the competitive equilibrium is Pareto optimal (it is the solution to the planner’s
problem with α = α(θB). Targeted loan support is not Pareto improving.

4. If θB > θZLB, the competitive equilibrium is Pareto inefficient. Targeted loan support is always
Pareto improving.

Targeted loan support programs, like ex post debt relief with a cap, implement efficient
allocations which are relatively favorable for borrowers. Unlike ex ante debt limits without
compensating transfers, targeted loan support compensates borrowers for the reduction in their
ability to borrow, while the tax on debt still discourages overborrowing.

6.4 Debt limits with a distribution of types

Debt limits, like other forms of rationing, force agents who would otherwise borrow different
amounts to borrow the same amount. This inefficiency is absent in an economy with only one
type of borrower. To properly compare ex ante debt limits and ex post debt relief, I return to the
economy with a distribution of types considered in Section 5, and ask whether a binding debt
limit without compensating transfers is constrained efficient.28 The following proposition states
that the debt limit is inefficient if some households are sufficiently impatient.

Proposition 6.7. Take any allocation in which a debt constraint binds for agents in some interval [θ∗, θ̄]

at date 0. Suppose
f (θ)

u′(c0(θ))
is increasing. Then there exists θ∗ such that if θ̄ > θ∗, the allocation is

Pareto inefficient.

Figure 17 illustrates a case where a debt limit is Pareto inefficient. The lightly shaded region
shows the budget set with a debt limit, which binds for types θ ∈ [θM, θH ]. Construct a Pareto
improving deviation as follows. Increase date 1 consumption for types θ ≤ θM, rearranging their
date 0 consumption so as to reduce it on average. If the date 1 resource constraint binds, pay
for this increase in date 1 consumption by decreasing date 1 consumption for some high θ types
(such as θH), compensating them by increasing their date 0 consumption. If these households

28Even with only two agents, we have already seen that a debt limit is not always Pareto improving, since it may
make impatient borrowers worse off, by preventing them from borrowing.
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are impatient enough, even a small increase in date 0 consumption compensates for a large fall
in date 1 consumption, and our deviation is feasible; thus the original allocation was Pareto
inefficient. The dark shaded area shows one transfer function implementing this deviation.

 

Figure 17: Inefficient debt limit and Pareto-improving deviation

While debt limits prevent overborrowing, they are a blunt instrument, preventing even the
most impatient households from borrowing. This is unnecessary, since to prevent a debt-driven
recession, it is only necessary to limit borrowers’ aggregate debt. It may be better to allow im-
patient households to borrow, but tax them at a high rate. This is exactly what targeted loan
support programs do. Again, the next result follows immediately from Proposition (5.6), given
the equivalence of targeted loan support programs and debt relief transfer functions.

Proposition 6.8. If the ZLB binds in the equilibrium without policy:

1. The equilibrium is constrained inefficient.

2. Targeted loan support programs with τ > 0 implementing full employment allocations are con-
strained efficient.

If the ZLB is slack, the equilibrium is constrained efficient.

7 Further questions

In this section, I consider three additional questions. First, how does optimal policy change
if the crisis does not occur with probability one? Second, are the conclusions above robust to
making borrowers and savers differ in their income, rather than their preferences? Third, are the
conclusions robust to introducing endogenous labor supply?

Before considering these substantive extensions of the baseline model, I discuss how it can
be reinterpreted. In the model presented above, borrowers and savers differ in their preferences.
Consider the following three alternatives. First, suppose that individuals’ date 0 income is y∗− θi,
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where θi ∈ R is a transitory income shock, unobservable to the planner. Agents with a negative
shock will want to borrow; agents with a positive shock will save. Second, suppose agents have
initial debt θi, which is unobservable to planner. Again, agents with high debt will seek to roll
over some of this debt, paying it off gradually over time. Finally, suppose that in addition to
purchasing nondurable consumption, agents have inelastic demand for a certain quantity of a
‘necessary’ consumption good (which could be housing, healthcare, etc.). I now show that all
these cases are isomorphic to the economy considered above.

In all three cases, households’ date 0 consumption is ci
0 = y∗ − θi +

di

1 + r0
. The planner

only observes households’ debt and can no longer infer their period 0 consumption, as in the
model with purely preference-based heterogeneity. Consequently, the planner cannot choose
consumption allocations for workers. Instead, the planner chooses ĉi

0 := ci
0 + θ, which can be

inferred from a household’s debt. Preferences over this object are u(ĉi
0 − θi). This is equivalent

to an economy in which θi is a taste shock, and agents have preferences

u(ci
0 − θi) +

∞

∑
t=1

βtu(ci
t),

which is a special case of the baseline model with U(c, θ) = u(c− θ).
I now extend the baseline model with two types to answer the questions raised above.29 Re-

call the main conclusions from Section 4: efficient allocations have the structure described in
Proposition 4.1; debt-contingent transfers (in particular, debt relief) implement efficient alloca-
tions; and debt relief is Pareto-improving when the ZLB binds. In each of the three extensions
below, I ask whether these results still hold.

7.1 Probability of crisis less than one

I now extend the results in Section 4 to the case where the probability of crisis is less than
1. With probability π, the borrowing constraint permanently falls to φ at date 1, as before.
With probability 1− π, the borrowing constraint never binds.30 If the crisis does not occur, the
economy immediately converges to steady state. Letting hats denote variables in the non-crisis
state, households have preferences

θiu(ci
0) + π

[
βu(ci

1) +
β2

1− β
u(ci

2)

]
+ (1− π)

β

1− β
u(ĉi

1)

Since there is now aggregate risk in the economy, it is necessary to specify the financial assets
available to households. I consider two cases. In the incomplete markets economy, households
trade a riskless bond, as before. In the complete markets economy, they trade in a complete set

29For simplicity, I focus on implementation with date 1 transfers; the results from Section 6 regarding implementa-
tion with macroprudential policy would carry over in the same way.

30I assume agents have the same, model-consistent expectations regarding the probability of crisis. Korinek and
Simsek [2014] consider in detail the case where households have different expectations, and borrowers are more
optimistic than savers.
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of Arrow-Debreu securities. Let q0 and q̂0 denote the price of securities paying one unit of the
consumption good at date 1 in the crisis state and in the non-crisis state, respectively, and let di

1

and d̂i
1 denote the securities of each type issued by household i.

At date 1, the transfers provided by the government now depend on the aggregate state, in
addition to household borrowing. In the incomplete markets economy, the government offers
two transfer functions, T(d) in the crisis state and T̂(d) in the non-crisis state. In the complete
markets economy, these transfers may depend on households’ issuance of each security, so the
functions have the form T(d, d̂), T̂(d, d̂).

Naturally, since the crisis may not occur, debt relief distorts ex ante incentives less. The
following proposition is elementary:

Proposition 7.1. If π = 0, the full employment transfer is always incentive compatible.

As before, I define a constrained efficient allocation as the solution a Pareto problem.31 The
following proposition states that solutions to the Pareto problem have the same structure as
before, and can be implemented as equilibria with transfers.

Proposition 7.2. In the economy with π < 1:

1. Constrained efficient allocations have the structure described in Proposition 4.1.

2. Every constrained efficient allocation can be implemented as an equilibrium with transfers in both
the incomplete markets economy, and in the complete markets economy.

As in Section 4.2, I now ask when debt relief implements optimal allocations. With π < 1
it is no longer possible to implement optimal allocations with simple piecewise linear transfer
functions (the debt relief transfer functions defined above), so a broader definition of debt relief
is necessary. I will say that there is debt relief in the crisis state if dB

1 > 0 > dS
1 (B takes on debt

while S saves) and T(dB
1 ) > T(dS

1) (B receives a larger transfer than S in equilibrium). With these
redefinitions, Proposition 4.4 remains valid.

Proposition 7.3. There exists ᾱ(θ, π) such that

1. A transfer function with debt relief implements the optimal allocation if α < ᾱ(θ, π)

2. If (ICS) binds, α < ᾱ(θ, π) and debt relief implements the optimal allocation.

Finally, I ask whether debt relief is Pareto-improving, relative to the equilibrium without
policy. The following Proposition confirms that Proposition 4.7 still holds in the complete markets
economy: debt relief is generally purely redistributive, but is always Pareto-improving when the
ZLB binds. However, in the incomplete markets economy, debt relief is Pareto improving even
when the ZLB does not bind, provided that the borrowing constraint binds.

Proposition 7.4. 1. If θB ≤ θBC, the competitive equilibrium is Pareto optimal. Debt relief is not
Pareto improving.

31The full Pareto problem with π < 1 is presented in the Appendix.
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2. If θB ∈ (θBC, θZLB], the competitive equilibrium is Pareto optimal under complete markets, and
Pareto inefficient under incomplete markets. Debt relief is always Pareto improving in the incomplete
markets economy.

3. If θB > θZLB, the competitive equilibrium is Pareto inefficient. Debt relief is always Pareto improv-
ing.

When markets are incomplete, debt relief can be Pareto improving even if the ZLB does not
bind. The incomplete markets economy has aggregate risk: with probability π the borrowing
constraint will tighten, but agents can only invest in a riskless bond ex ante, and cannot insure
against this shock. This creates an additional rationale for transfers to borrowers, to help them
smooth consumption when credit markets do not allow them to do so. The first-best allocation
smooths consumption across states of the world: ci

1 = ĉi
1, i = S, B. When the borrowing constraint

binds in the crisis state, this cannot be the equilibrium allocation, since for any level of debt d1,
cB

1 = y∗ + φ − d1, while ĉB
t = y∗ − (1− β)d1 > cB

1 . In order to implement the first best, it is
necessary to write off part of borrowers’ debt. Debt relief, like bankruptcy, completes markets
(Zame [1993]). In the complete markets economy this inefficiency disappears, and the competitive
equilibrium is Pareto inefficient only when the ZLB binds.

Targeted transfers have two distinct macroeconomic roles (in addition to their purely redis-
tributive role). First, when output is demand constrained, transfers can stimulate demand by
redistributing resources to agents with a higher propensity to consume. Secondly, public trans-
fers can substitute for private insurance opportunities (such as borrowing and lending in credit
markets) in times when these opportunities are not available, helping agents to smooth consump-
tion. There are many reasons why it may be harder for individuals to smooth consumption in
recessions: household wealth is depleted, credit constraints are tighter, and lifetime income falls
more after job loss (Davis and von Wachter [2011]). Public transfers (debt relief, unemployment
insurance, or stimulus payments) targeted at individuals who lack other insurance mechanisms
can be Pareto improving, irrespective of whether they increase aggregate output.

7.2 Persistent types

So far, I have assumed that borrowers and savers only differ in their income or preferences at
date 0. Borrowers are initially more impatient or have lower income at date 0, but starting at
date 1 they are identical to savers. Alternatively, borrowers might borrow because they expect
higher future income than savers, or because they have fewer necessary expenditures to make in
the future and have less need to save. One might worry that in this case, redistribution from the
poor savers to the rich borrowers might no longer increase aggregate demand.

To address this concern, I augment my baseline model to allow a household’s type to have a
persistent effect on preferences and income at all dates, not just date 0. I continue to assume the
planner only observes households’ debt, borrowing and lending, and not their income or other
consumption needs. Let agents have preferences U(x, θ) = ∑∞

t=0 βtut(xt, θ), where xt represents
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net financial plus public transfers: xt =
dt+1

1 + rt
− dt + T(dt). This specification allows θ to capture

differences in preferences or income in any period t. Borrowers may be lucky individuals who
borrow against their long-run income, unlucky individuals facing temporary income losses, or
simply more impatient. The main conclusions of the model go through as long as preferences
satisfy the following assumptions. First, preferences are concave and satisfy an Inada condition:

Assumption 7.5. For all t, θ, there exists xt(θ) such that ut(·, θ) is C2 on (xt(θ), ∞), with u′t > 0,
u′′t < 0, limx→xt(θ) u′t(x, θ) = +∞, limx→xt(θ) ut(x, θ) = −∞.

Second, preferences satisfy a standard Spence-Mirlees condition: higher θ agents want to
borrow more in period 0.

Assumption 7.6.
u′0(x0, θ)

βu′1(x1, θ)
is increasing in θ.

Finally, I make the following assumption ensuring that the economy could reach steady state
in period 1, were it not for the borrowing constraint.

Assumption 7.7.
u′t+1(x, θ)

u′t(x, θ)
= 1, for all θ, x, t ≥ 1.

Under these three assumptions, the main results from Section 4 and 4.2 go through. As before,
I characterize constrained efficient allocations as the solution to a modified Pareto problem.32

Proposition 7.8. Suppose Assumptions 7.5, 7.6, 7.7 are satisfied. Then:

1. Constrained efficient allocations have the structure described in Proposition 4.1.

2. Every constrained efficient allocation can be implemented as an equilibrium with transfers.

3. There exists α(θB) such that debt relief implements the optimal allocation if α < α(θB), and a savings
subsidy implements the optimal allocation if α > α(θB). If (ICS) binds, α < α(θB); if (ICB) binds,
α > α(θB).

4. Debt relief is Pareto-improving relative to the equilibrium without policy if and only if θB > θZLB.

Above, I raised the concern that if B’s borrowing is motivated by higher future income (rather
than low current income), transfers from S to B may not increase aggregate demand. This concern
turns out to be unfounded. Even in this more general setting, household S is never liquidity
constrained at date 1, whereas B may be constrained. Intuitively, type B households who borrow
to consume more than their income at date 0, whatever their motive, must consume less than
their income at date 1. Conversely, type S households who save at date 0 must consume more

32The full Pareto problem is presented in the Appendix. There is one relatively minor difference, which only
applies when the borrowing constraint does not bind in the planner’s problem, and when one incentive constraint
binds. Since I focus on optimal policy in the regime where the borrowing constraint and ZLB both bind, this makes
no difference to any of the main results. It is described in the Appendix.
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than their income at date 1. If any household is constrained at date 1, it must be B, since B is
consuming less than her income (even if she earns more than S).

In this simple model, the only difference in propensity to consume comes from binding liq-
uidity constraints. Since B is sometimes constrained while S is never constrained, it follows that
B must have a (weakly) higher propensity to consume than S; the zero lower bound restricts S’s
consumption, but not B’s; and redistribution from S to B can stimulate aggregate demand. The
same result would go through if type B households were permanently more impatient than type
S households: clearly, this would only increase type B’s propensity to consume.

7.3 Endogenous labor supply

So far, I have discussed the optimality of debt relief in an endowment economy. I now modify
the model to include endogenous labor supply in the simplest possible way.

Households have concave preferences U(c, h) over consumption and hours worked:

θiU(ci
0, hi

0) +
∞

∑
t=1

βtU(ci
t, hi

t)

Firms hire labor from households at a real wage wt, and produce output using a linear technol-
ogy, y = h. Each household receives an equal share of firms’ real profit, πt = (1− wt)ht. In
a Walrasian equilibrium, wt = 1 and labor supply is efficient. As we have seen, this equilib-
rium may imply a negative real interest rate. In order to introduce the zero lower bound in this
economy, I assume that firms are demand constrained in the market for final goods, borrowing
from the literature on non-Walrasian equilibria (Benassy [1993]). Let a firm’s desired sales be
y∗t = arg maxy≥0(1−wt)y. We have y∗t = 0 for wt > 1, yt = ∞ if wt < 1, and yt = [0, ∞) if wt = 1.
Output is less than or equal to desired sales: yt ≤ y∗. As before, I assume that interest rates clear
the goods market whenever this does not violate the ZLB: yt = y∗t if rt > 0. When hiring labor,
firms take into account the quantity constraints they face on the goods market as well as the real
wage, so their demand for labor is ht = yt (not ht = y∗t ).33 Households supply labor freely at the
market-clearing real wage. In this economy, recessions occur when a fall in demand makes the
real interest rate fall to zero. Firms become rationed in the goods market, and the real wage falls
so that demand equals supply in the labor market.

I now consider optimal policy in this economy. I modify the definition of equilibrium with
transfers to allow for a linear tax on labor income at date 1, which may depend on debt. House-
hold i’s budget constraint at date 1 is

ci
1 + di

1 = T(di
1) + (1− τ(di

1))w1hi
1 + π1 +

di
2

1 + r1

where τ(di
1) is the debt-contingent tax on labor income, and π1 is the representative firm’s profit

33As emphasized by Benassy [1993], quantity constraints in the goods market can cause underemployment in the
labor market, even if the labor market itself is flexible.
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at date 1.
I modify the Pareto problem to allow for endogenous labor supply.34 As before, I define

a constrained efficient allocation as the solution to the Pareto problem: constrained efficient
allocations solve this Pareto problem.

Proposition 7.9. Any solution to the Pareto problem with endogenous labor supply can be implemented
as an equilibrium with transfers.

The following proposition characterizes constrained efficient allocations.

Proposition 7.10. Suppose the borrowing constraint binds in the Pareto problem. Then in any optimal
allocation:

1. For any θB, there exist 1 > αB > αS > 0 such that ICB binds iff α > αB and ICS binds iff α < αS.

2. If the ZLB binds, S faces a positive labor wedge unless utility is quasilinear (Uch/Ucc = Uh/Uc)

3. B faces a zero labor wedge unless ICS binds.

4. If preferences are separable (Uch = 0), B always faces a zero labor wedge.

Finally, as in the endowment economy, debt relief is always optimal, and is Pareto improving
when the ZLB binds in equilibrium.

Proposition 7.11. 1. There exists α(θB) ∈ (αS, αB) such that the optimal allocation can be imple-
mented with debt relief if α < α(θB), and the optimal allocation can be implemented with a savings
subsidy if α > α(θB).

2. If the ZLB binds in equilibrium, the competitive equilibrium is Pareto inefficient. Debt relief is Pareto
improving.

8 Conclusion

I present a model in which both debt relief and macroprudential policy have costs and benefits.
Debt relief redistributes towards households with a high propensity to consume, stimulating
the economy at the zero lower bound, but encourages overborrowing ex ante. Macroprudential
policies prevent the overborrowing that leads to a recession, but can make borrowers worse off.
Naive debt relief and macroprudential policies may not be Pareto improving, because the costs
outweigh the benefits. However, it is possible to design sophisticated ex post or ex ante transfer
policies which are Pareto improving, because the benefits outweigh the costs.

I conclude by comparing optimal debt relief and macroprudential policy to some practical
policy proposals. I forbid the planner from relaxing the borrowing constraint. This rules out
direct lending to households, deficit-financed lump sum transfers, (Bilbiie et al. [2013b]), and

34The full Pareto problem with endogenous labor supply is presented in the Appendix.
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postponement of debt payments (a feature of most debt restructurings). More subtly, it rules
out converting mortgages into shared appreciation mortgages (Caplin et al. [2008]), which give
lenders a share of future house price appreciation. Such a policy compensates lenders for writing
down principal, and prevents moral hazard, since applicants lose out if prices rise. It is ruled
out in my model, since promising more payments from borrowers to lenders (if prices rise)
violates the borrowing constraint. Relaxing the borrowing constraint would always be optimal,
if possible. In order to evaluate credit policies, it is necessary to have a model in which the
government can circumvent borrowing constraints, while the private sector cannot.35

In this model, households are identical except for their unobservable preferences and observ-
able debt. In reality, households differ in many other observable characteristics; as in any optimal
taxation problem, it will in general be optimal to target debt relief and macroprudential taxes
based on all these observables. Governments should target transfers to high debt households
only insofar as they are liquidity constrained, and have a higher MPC than low-debt households.
For example, if MPCs depend on debt relative to income, debt relief (or macroprudential taxes)
should be aimed at households with a high debt-income ratio, not high debt per se.36

Many debates concern households with an existing stock of debt. If lenders offer restruc-
turing to households who miss payments, then even financially healthy households will have
an incentive to miss payments (Mayer et al. [2014]). My model can be interpreted along these
lines. Suppose all agents have some inital debt, and owe some payments at dates 0 and 1. Type S
households are financially healthy, and can make payments at date 0. Type B households face a
negative shock at date 0, and must delay payments until date 1, when they repay everything and
are liquidity constrained. Transfers to B would stimulate aggregate demand, but would encour-
age S to mimic B by delaying payments. My model suggests that optimal policy can avoid this
problem in two ways. First, transfers should not be too large. Second, borrowers should only
qualify for restructuring if they make some minimum level of payments. Such a policy is similar
to Hockett et al. [2012]’s proposal for contingent principal reduction.

My model abstracts from housing, secured lending, and default. In reality, most household
debt is mortgage debt, and most debates about debt relief focus on the mortgage market, where
the benefits and cost of debt relief are subtly different from those considered here. As well as
stimulating the overall economy, targeted mortgage debt relief could support the housing mar-
ket, reducing fire sales and foreclosure externalities.37 However, as discussed above, mortgage
relief targeted to delinquent borrowers might induce even financially ‘healthy’ homeowners to
delay payments. While these benefits and costs differ from those studied here, my main result
- cleverly designed debt relief can be welfare improving - still applies. The core intuition is that

35Further, any credit policy must be relatively protracted. If the government was to lend to households for one
period and then stop lending, that would merely postpone the liquidity trap.

36If low income households, rather than indebted households, have the highest propensity to consume, transfers
should be targeted based on income, not wealth. In that case, optimal policy would balance the macroeconomic
benefits from redistribution against the incentive effects of higher transfers.

37While the question is controversial, recent research tends to confirm that foreclosure reduces the value of nearby
homes, and this externality seems to come from physical effects (foreclosed homes are not maintained, making the
neighborhood less attractive) rather than a direct effect on prices (Gerardi et al. [2012], Fisher et al. [2014]).
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in an equilibrium without policy, ‘healthy’ homeowners do not miss payments, as ‘precarious’
households do - presumably because they face some cost of delinquency (stigma, deterioration
of their credit score, or risk of foreclosure). Therefore there is room to give some transfers to
precarious households, without inducing healthy households to mimic them.

The model can also be reinterpreted to apply to sovereign debt relief. Outright debt relief
is sometimes proposed as a solution to the European debt crisis; just as frequently, it is met
with the criticism that debt relief represents a pure redistribution from creditor countries to
debtor countries, and encourages overborrowing, sowing the seeds of future crises. My results
suggest that one can design sovereign debt relief policies so that the benefits outweigh these
costs. However, the model lacks several important characteristics of sovereign debt, especially
default. A full extension of the model to cover sovereign debt relief is left to future work.
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