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philipp.renner@business.uzh.ch

Karl Schmedders

DBA – Universität Zürich
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Abstract

This paper presents a new method for the analysis of moral hazard principal-

agent problems. The new approach avoids the stringent assumptions on the dis-

tribution of outcomes made by the classical first-order approach and instead only

requires the agent’s expected utility to be a rational function of the action. This

assumption allows for a reformulation of the agent’s utility maximization problem as

an equivalent system of equations and inequalities. This reformulation in turn trans-

forms the principal’s utility maximization problem into a nonlinear program. Under

the additional assumptions that the principal’s expected utility is a polynomial and

the agent’s expected utility is rational in the wage, the final nonlinear program can

be solved to global optimality. The paper also shows that the polynomial optimiza-

tion approach, unlike the classical approach, extends to principal-agent models with

multi-dimensional action sets.
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1 Introduction

In moral hazard principal-agent problems, the principal maximizes her utility subject to

two constraints involving the agent’s utility function, a participation constraint and an

incentive-compatibility constraint. While the participation constraint is rather straight-

forward, it just imposes a lower bound on the agent’s expected utility, the incentive-

compatibility constraint involves an expected utility maximization problem of the agent.

As a consequence, principal-agent problems are a type of bilevel optimization problems,1

a class of optimization problems that is notoriously difficult. The most popular solution

approach to principal-agent problems with a one-dimensional effort set for the agent is

the first-order approach, which replaces the agent’s maximization problem by the cor-

responding first-order condition and leads to an optimization problem for the principal

that is more tractable. Unfortunately, this approach requires very restrictive assump-

tions on the probability distribution of outcomes, which fail to hold in many economic

applications.2 A more widely applicable solution approach for principal-agent problems

is obviously desirable.

In this paper, we present a new method for the analysis of moral hazard principal-

agent problems. The new approach avoids the stringent assumptions on the distribution of

outcomes made by the classical first-order approach and instead only requires the agent’s

expected utility to be a rational function of the action. This assumption allows us to

employ the global optimization approach for rational functions of Jibetean and de Klerk

(2006). We transform the agent’s expected utility maximization approach into an equiva-

lent semidefinite programming (SDP) problem via a sum of squares representation of the

agent’s utility function. Semidefinite programs are a special class of convex programming

problems which can be solved efficiently both in theory and in practice, see Vandenberghe

and Boyd (1996) and Boyd and Vandenberghe (2004). We can further reformulate the

SDP into a set of inequalities and equations, thereby transforming the principal’s bilevel

optimization problem into a “normal” nonlinear program. Under the additional assump-

tions that all objective functions and constraints are rational, the action set is an interval

and if the set of wages is compact, then the resulting problem is a polynomial optimiza-

1The major feature of bilevel optimization problems is that they include two mathematical programs

in a single optimization problem. One of the mathematical programs is part of the constraints of the

other one. This hierarchical relationship is expressed by calling the two programs the lower-level and the

upper-level problem, respectively. In the principal-agent problem, the agent’s problem is the lower level

and the principal’s problem is the upper level problem.
2In economic applications, the first-order approach is then often just assumed to be applicable. In

that case, of course, the resulting conclusions may or may not be valid. Needless to say, this custom is

rather unsatisfactory.
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tion problem, which is globally solvable. We can then use the methods implemented in

GloptiPoly, see Henrion, Lasserre, and Löfberg (2009), to find a globally optimal solution

to the principal-agent problem. That is, we can obtain a numerical certificate of global

optimality.

The first-order approach, a widely used solution method for principal-agent problems,

replaces the incentive-compatibility constraint that the agent chooses a utility-maximizing

action, by the first-order condition for the agent’s utility maximization problem. Mirrlees

(1999) (originally circulated in 1975) was the first to show that this approach is invalid

in general (even though it had frequently been applied in the literature). Under two con-

ditions on the probability function of outcomes, the monotone likelihood-ratio condition

(MLRC) and the convexity of distribution function condition (CDFC), Rogerson (1985)

proved the validity of the first-order approach. Mirrlees (1979) had previously surmised

that these two assumptions would be sufficient for a valid first-order approach and so

these conditions are also known as the Mirrlees-Rogerson conditions. The CDFC is a

rather unattractive restriction. Rogerson (1985) pointed out that the CDFC generally

does not hold in the economically intuitive case of a stochastic production function with

diminishing returns to scale generating the output. In addition, Jewitt (1988) observed

that most of the standard textbook probability distributions do not satisfy the CFDC.3

Jewitt (1988) provided a set of sufficient technical conditions avoiding the CDFC and two

sets of conditions for principal-agent models with multiple signals on the agent’s effort.

Sinclair-Desgagné (1994) introduced a generalization of the CDFC for an extension of

the Mirrless-Rogerson conditions to a first-order approach for multi-signal principal-agent

problems. Finally, Conlon (2009) clarified the relationship between the different sets

of sufficient conditions and presented multi-signal generalizations of both the Mirrlees-

Rogerson and the Jewitt sufficient conditions for the first-order approach. Despite this

progress,4 all of these sufficient sets of conditions are regarded as highly restrictive, see

Conlon (2009) and Kadan, Reny, and Swinkels (2011).

Principal-agent models in which the agent’s action set is one-dimensional dominate

both the literature on the first-order approach as well as the applied and computational

literature, see for example, Araujo and Moreira (2001), Judd and Su (2005), Armstrong,

Larcker, and Su (2010). However, the analysis of linear multi-task principal-agent models

3LiCalzi and Spaeter (2003) described two special classes of distributions that satisfy the CDFC.
4Araujo and Moreira (2001) introduced a Lagrangian approach different from Mirrlees (1999). Instead

of imposing conditions on the outcome distribution, they included more information in the Lagrangian,

namely a second-order condition as well as the behavior of the utility function on the boundary in order

to account for possible non-concave objective functions. A number of additional technical assumptions

considerably limits the applicability of this approach as well.
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in Holmström and Milgrom (1991) demonstrates that multivariate agent problems exhibit

some fundamental differences in comparison to the common one-dimensional models. The

theoretical literature that allows the set of actions to be multi-dimensional, for example,

Grossman and Hart (1983), Kadan, Reny, and Swinkels (2011), and Kadan and Swinkels

(2012), focuses on the existence and properties of equilibria. To the best of our knowledge,

the first-order approach has not been extended to models with multi-dimensional action

sets.

In this paper, we also extend our polynomial optimization approach to principal-agent

models in which the agent has more than one decision variable. When we apply the multi-

variate optimization approach of Jibetean and de Klerk (2006) we encounter a theoretical

difficulty. Unlike univariate nonnegative polynomials, multivariate nonnegative polyno-

mials are not necessarily sums of squares of fixed degree. This fact has the consequence

that we can no longer provide an exact reformulation of the agent’s utility maximization

problem but only a relaxation depending on the degree of the involved polynomials. The

relaxed problem yields an upper bound on the agent’s maximal utility. We then use this

relaxation to replace the agent’s optimization problems by equations and inequalities in-

cluding a constraint that requires the upper utility bound not to deviate from the true

maximal utility by more than some pre-specified tolerance level. We then prove that as

the tolerance level converges to zero, the optimal solutions of the sequence of nonlinear

programs involving the relaxation converge; and, in fact, the limit points yield optimal

solutions to the original principal-agent problem.

While our main results are of theoretical nature, our paper also contributes to the com-

putational literature on principal-agent problems. Due to the strong assumptions of the

first-order approach, the computational literature has shied away from it. Prescott (1999)

and Prescott (2004) approximated the action and compensation sets by finite grids and

then allows for action and compensation lotteries. The resulting optimization problem

is linear and thus can be solved with efficient large-scale linear programming algorithms.

Judd and Su (2005) avoided the compensation lotteries and only approximated the action

set by a finite grid. This approximation results in a mathematical program with equi-

librium constraints (MPEC). Contrary to the LP approach, the MPEC approach may

face difficulties finding global solutions, since the standard MPEC algorithms only search

for locally optimal solutions. Despite this shortcoming, MPEC approaches are powerful

and have recently received a lot of attention in economics, see for instance Su and Judd

(2012) and Dubé, Fox, and Su (2012). Our polynomial optimization approach does not

need lotteries and instead allows us to solve principal-agent problems with continuous

action and compensation sets.
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The remainder of this paper is organized as follows. Section 2 describes the principal-

agent model and the classical first-order approach. In Section 3 we introduce our main

result for the polynomial optimization approach. Section 4 summarizes the mathematical

background for our analysis and provides a proof of the main result. We extend the

polynomial approach to models with multi-dimensional action sets in Section 5. Section 6

concludes.

2 The Principal-Agent Model

In this section, we briefly describe the principal-agent model under consideration. Next

we review the first-order approach. We complete our initial discussion of principal-agent

problems by proving the existence of a global optimal solution.

2.1 The Principal-Agent Problem

The agent chooses an action (“effort level”) a from a set A ⊂ RL. The outcome (“output”

or “gross profit”) received by the principal from an action a taken by the agent can be

one of N possible values, y1 < y2 < . . . < yN , with yi ∈ R. Let µ(•|a) be a parameterized

probability measure on the set of outcomes Y = {y1, y2, . . . , yN}. Then for any yi, µ(yi|•)
is a function mapping A into [0, 1]. Of course,

∑N
i=1 µ(yi|a) = 1 for all a ∈ A.

The principal cannot monitor the agent’s action but only the outcome. Thus, the

principal will pay the agent conditional on the observed outcome. Let wi ∈ W ⊂ R denote

the wage paid to the agent if outcome yi occurs. A contract (“compensation scheme”)

between the principal and the agent is then a vector w = (w1, w2, . . . , wN) ∈ W ≡ WN .

The principal has a Bernoulli utility function over income, u : I → R, with domain

I = (I,∞) ⊂ R for some I ∈ R ∪ {−∞}. For example, if the principal receives the

outcome yi and pays the wage wi, then she receives utility u(yi − wi). The agent has

a Bernoulli utility function over income and actions given by v : J × A → R, with

J = (J,∞) ⊂ R for some J ∈ R ∪ {−∞}. Both the principal and the agent have von

Neumann-Morgenstern utility functions. The expected utility functions of the principal

and agent are

U(w,a) =
N∑
i=1

u(yi − wi)µ(yi|a) and V (w,a) =
N∑
i=1

v(wi,a)µ(yi|a),
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respectively. We are now in the position to state the principal-agent problem.

max
w∈W,a∈A

U(w,a)

s.t. a ∈ argmax
b∈A

V (w, b)

V (w,a) ≥ V

(1)

The objective of this optimization problem is to maximize the principal’s expected utility.

The first constraint,

a ∈ argmax
b∈A

V (w, b) (2)

is the incentive-compatibility constraint for the agent; he will only take actions that

maximize his own expected utility. We assume implicitly that the agent does not work

against the principal, that is, if he is indifferent between several different actions then

he will choose the action most beneficial to the principal. The second constraint is the

participation constraint for the agent. He has an outside option and will accept a contract

only if he receives at least the expected utility V of that outside opportunity.

The principal cannot observe the agent’s actions but knows his utility function. Thus,

the described principal-agent model exhibits pure moral hazard and no hidden informa-

tion. The first-order approach for models of this type has been examined by Mirrlees

(1999), Rogerson (1985), Jewitt (1988), Sinclair-Desgagné (1994), Alvi (1997), Jewitt,

Kadan, and Swinkels (2008), Conlon (2009), and others.

2.2 The First-Order Approach

In general it is very difficult to find a global optimal solution to the principal-agent problem

(1). For the model with a one-dimensional action set, A = [a, ā] with ā ∈ R ∪ {∞},
the popular first-order approach replaces the incentive-compatibility constraint (2) by a

stationarity condition. If the set A is sufficiently large so that the optimal solution to

the agent’s expected utility maximization problem has an interior solution, the necessary

first-order condition is

∂

∂a
V (w, a) =

N∑
i=1

(
∂

∂a
v(wi, a) µ(yi|a) + v(wi, a)

∂

∂a
µ(yi|a)

)
= 0. (3)

For an application of the first-order approach, standard monotonicity, curvature, and

differentiability assumptions are imposed. Rogerson (1985) introduces the following as-

sumptions (in addition to some other minor technical conditions).

(1) The function µ(y|•) : A→ [0, 1] is twice continuously differentiable for all y ∈ Y .
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(2) The principal’s Bernoulli utility function u : I → R is strictly increasing, concave,

and twice continuously differentiable.

(3) The agent’s Bernoulli utility function v : J × A → R satisfies v(w, a) = ψ(w) − a.

The function ψ : J → R is strictly increasing, concave and twice continuously

differentiable.

These three assumptions alone are not sufficient for the first-order approach to be valid,

since the probabilities µ(yi|a) depend on the action a and thus affect the monotonicity

and curvature of the expected utility functions. Rogerson (1985) proved the validity of

the first-order approach under two additional assumptions on the probability function,

see also Mirrlees (1979). We define the following function Fj(a) =
∑j

i=1 µ(yi|a). For

µ(yi|a) >> 0 for all a ∈ A and all i , the conditions of Mirrlees (1979) and Rogerson

(1985) are as follows.

(MLRC) (monotone likelihood-ratio condition5) The measure µ has the property that for

a1 ≤ a2 the ratio µ(yi|a1)
µ(yi|a2) is decreasing in i.

(CDFC) (convexity of the distribution function condition) The function F has the prop-

erty that F ′′
i (a) ≥ 0 for all i = 1, 2, . . . , N and a ∈ A.

According to Conlon (2009), these assumptions are the most popular conditions in

economics, even though other sufficient conditions exist, see Jewitt (1988). Sinclair-

Desgagné (1994) generalized the conditions of Mirrlees (1979) and Rogerson (1985) for

the multi-signal principal-agent problem. Conlon (2009) in turn presented multi-signal

generalizations of both the Mirrlees-Rogerson and the Jewitt sufficient conditions for the

first-order approach. Despite this progress, all of these conditions are regarded as highly

restrictive, see Conlon (2009) and Kadan, Reny, and Swinkels (2011).

2.3 Existence of a Global Optimal Solution

For the sake of completeness, we show the existence of a global optimal solution to the

principal-agent problem (1) without assumptions on the differentiability, monotonicity,

and curvature of the utility and probability functions. For this purpose we introduce the

following three assumptions.

Assumption 1 (Feasibility). There exists a contract w ∈ W such that the agent is willing

to participate, that is, V (w,a) ≥ V for some a ∈ A.

5The MLRC implies a stochastic dominance condition, F ′
i (a) ≤ 0 for all i = 1, 2, . . . , N and a ∈ A.
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Assumption 2 (Compactness). Both decision variables are chosen from compact do-

mains.

(1) The set A of actions is a non-empty, compact subset of a finite-dimensional Eu-

clidean space, A ⊂ RL.

(2) The set W of possible wages is a nonempty, compact interval [w,w] ⊂ R.

Assumption 3 (Continuity). All functions in the model are continuous.

(1) The function µ(y|•) : A→ [0, 1] is continuous for all y ∈ Y .

(2) The principal’s Bernoulli utility function u : I → R is continuous on I.

(3) The agent’s Bernoulli utility function v : J × A→ R is continuous on J × A.

For simplicity we also assume that the expected utility functions U and V are well-

defined on their domain W ×A. (Sufficient conditions for this innocuous assumption are

J < w and I < y1 − w). Under the stated assumptions, a global optimal solution to the

optimization problem (1) exists.

Proposition 1. If Assumptions 1 – 3 hold, then the principal-agent problem (1) has a

global optimal solution.

Proof. Consider the optimal value function Ψ : W → R for the agent defined by Ψ(w) =

max{V (w,a) | a ∈ A}. By Assumptions 2 and 3, the expected utility function V is

continuous on the compact domain W × A. Thus, (a special case of) Berge’s Maximum

Theorem (Berge 1963) implies that Ψ is continuous on its domain W . Using the function

Ψ, we can state the feasible region F of the principal-agent problem (1),

F = {(w,a) ∈ W × A | V (w,a) = Ψ(w), V (w,a) ≥ V } .

The feasible region F is nonempty by Assumption 1. As a subset of W × A it is clearly

bounded. Since both V and Ψ are continuous functions and the constraints involve only

an equation and a weak inequality, the set F is also closed. And so the optimization

problem (1) requires the maximization of the continuous function U on the nonempty,

compact feasible region F . Now the proposition follows from the extreme value theorem

of Weierstrass.
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3 The Polynomial Optimization Approach for A ⊂ R

The purpose of this section is to state our main result, Theorem 1, and illustrate it by an

example.

Recall that a symmetric matrix M ∈ Rn×n is called positive semidefinite if and only if

vTMv ≥ 0 for all v ∈ Rn. We denote such matrices by M < 0. The set of all symmetric

positive semidefinite n× n matrices is a closed convex cone.

Next we introduce an assumption on the agent’s expected utility function.

Assumption 4 (Rational Expected Utility Function). The parameterized probability

distribution functions µ(y|•) : A → [0, 1] and the agent’s Bernoulli utility function

v : J ×A→ R are such that the agent’s expected utility function is a rational function of

the form

−V (w, a) = −
N∑
j=1

v(wj, a)µ(yj|a) =
∑d

i=0 ci(w)ai∑d
i=0 fi(w)ai

for functions ci, fi : W → R with
∑d

i=0 fi(w)ai > 0 for all (w, a) ∈ W × A.6 Moreover,

the two polynomials in the variable a,
∑d

i=0 ci(w)ai and
∑d

i=0 fi(w)ai, have no common

factors and d ∈ N is maximal such that cd(w) ̸= 0 or fd(w) ̸= 0.

Recall the notation ⌈x⌉ for the smallest integer not less than x. Using this notation,

we define the number D =
⌈
d
2

⌉
. Without loss of generality we assume for the set of

actions, A = [−1, 1] = {a ∈ R | 1− a2 ≥ 0}. The following theorem7 provides us with an

equivalent problem to the principal-agent problem (1).

Theorem 1. Let A = [−1, 1] and suppose Assumption 4 holds. Then (w∗, a∗) solves the

principal-agent problem (1) if and only if there exist ρ∗ ∈ R as well as matrices Q(0)∗ ∈
R(D+1)×(D+1) and Q(1)∗ ∈ RD×D such that (w∗, a∗, ρ∗, Q(0)∗, Q(1)∗) solves the following

optimization problem:

max
w,a,ρ,Q(0),Q(1)

U(w, a) subject to (4)

6The positivity condition for the denominator is necessary, since a change in sign would lead to division

by zero.
7Note that the row and column indexing of the two matrices in the theorem starts at 0. The reason

for this convention becomes clear in the theoretical arguments presented in Section 4.1.3.
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c0(w)− ρf0(w) = Q
(0)
0,0 +Q

(1)
0,0 (4a)

cl(w)− ρfl(w) =
∑
i+j=l

Q
(0)
ij +

∑
i+j=l

Q
(1)
ij −

∑
i+j=l−2

Q
(1)
ij , l = 1, . . . , d (4b)

Q(0), Q(1) < 0 (4c)

ρ

(
d∑

i=0

fi(w)ai

)
=

d∑
i=0

ci(w)ai (4d)

d∑
i=0

ci(w)ai ≤ −V

(
d∑

i=0

fi(w)ai

)
(4e)

−a2 + 1 ≥ 0 (4f)

w ∈ W (4g)

The new optimization problem (4) has the same objective function as the original

principal-agent problem (1). Unlike the original problem, the new problem (4) is not

a bilevel optimization problem. Instead the constraint involving the agent’s expected

utility maximization problem has been replaced by inequalities and equations. Problem

(4) has the additional decision variables ρ ∈ R, Q(0) ∈ R(D+1)×(D+1), and Q(1) ∈ RD×D.

The optimal value ρ∗ of the variable ρ in problem (4) will be −V (w∗, a∗), the negative

of the agent’s maximal expected utility. Constraints (4a)–(4c) use a sum of squares

representation of nonnegative polynomials to ensure that for a contract w chosen by the

principal, −V (w, a) ≥ ρ for all a ∈ A. That is, −ρ is an upper bound on all possible utility

levels for the agent. Note that equations (4a) and (4b) are linear in ρ and the elements of

the matrices Q(0) ∈ R(D+1)×(D+1) and Q(1) ∈ RD×D. Constraint (4c) requires that these

two matrices are symmetric positive semi-definite. (Later on we summarize properties

of positive semi-definite matrices, which show that constraint (4c) can be written as a

set of polynomial inequalities.) Next, constraint (4d) ensures that the variable −ρ is

actually equal to the agent’s utility for effort a and contract w. Therefore, this constraint

together with the constraints (4a)–(4c) forces any value of a satisfying the equation to

be the agent’s optimal effort choice as well as the value of ρ to be the corresponding

maximal expected utility value. Put differently, for a given contract w the first four

constraints ensure an optimal effort choice by the agent. The last three constraints are

straightforward. Constraint (4e) is the transformed participation constraint for the agent’s

rational expected utility function. Constraint (4f) is a polynomial representation of the

feasible action set and constraint (4g) is just the constraint on the compensation scheme

from the original principal-agent problem (1).

We illustrate the statement of the theorem by a simple example.

Example 1. Let A = [0, 1] and W = R+. There are N = 3 possible outcomes y1 < y2 <

10



y3 which occur with the probabilities

µ(y1|a) =
(
2

0

)
a0(1− a)2, µ(y2|a) =

(
2

1

)
a(1− a), µ(y3|a) =

(
2

2

)
a2(1− a)0.

The principal is risk-neutral with Bernoulli utility u(y − w) = y − w. The agent is

risk-averse and has utility

v(w, a) =
w1−η − 1

1− η
− κa2,

where η ̸= 1, η ≥ 0 and κ > 0. The agent’s expected utility is

V (w1, w2, w3, a) = (1− a)2
w1−η

1 − 1

1− η
+ 2(1− a)a

w1−η
2 − 1

1− η
+ a2

w1−η
3 − 1

1− η
− κa2.

The second-order derivative of V with respect to a,

∂2V

∂a2
=

2w1−η
1

1− η
− 4w1−η

2

1− η
+

2w1−η
3

1− η
− 2κ,

changes sign on W ×A. Thus, this function is not concave and so the classical first-order

approach does not apply. We apply Theorem 1 to solve this principal-agent problem. For

simplicity, we consider a specific problem with η = 1
2
, V = 0, κ = 2, and (y1, y2, y3) =

(0, 2, 4).

First we transform the set of actions A = [0, 1] into the interval A = [−1, 1] via the

variable transformation a 7→ a+1
2
. The resulting expected utility functions are

U(w, a) =2 + 2a− w1

4
+
aw1

2
− a2w1

4
− w2

2
+
a2w2

2
− w3

4
− aw3

2
− a2w3

4

V (w, a) =− 5

2
+

√
w1

2
+
√
w2 +

√
w3

2
− a− a

√
w1 + a

√
w3 − a2

√
w2 +

a2
√
w1

2
− a2

2
+
a2
√
w3

2

We observe that V (w, a) is a quadratic polynomial in a. The representation of −V (w, a)

according to Assumption 4 has the nonzero coefficients f0(w) = 1 and c0(w) = 5
2
−

√
w1

2
−

√
w2 −

√
w3

2
, c1(w) = 1 +

√
w1 −

√
w3, and c2(w) = 1

2
−

√
w1

2
+

√
w2 −

√
w3

2
. According

to Theorem 1, D = 1 and so the matrix Q(0) is a 2 × 2 matrix and Q(1) is just a single

number. With

Q(0) =

(
n00 n01

n01 n11

)
and Q(1) = m00
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we can rewrite the principal-agent problem as follows.

max
w1,w2,w3,a,ρ,n00,n01,n11,m

U(w1, w2, w3, a)

s.t.
5

2
−

√
w1

2
−
√
w2 −

√
w3

2
− ρ = n00 +m00

1 +
√
w1 −

√
w3 = 2n01

1

2
−

√
w1

2
+
√
w2 −

√
w3

2
= n11 −m00

ρ = −V (w1, w2, w3, a)

n00 ≥ 0, n11 ≥ 0, n00n11 − n2
01 ≥ 0,m00 ≥ 0

V (w1, w2, w3, a) ≥ 0

− a2 + 1 ≥ 0

w1, w2, w3 ≥ 0

We can solve this nonlinear optimization problem with Gloptipoly, see Henrion, Lasserre,

and Löfberg (2009), and obtain the globally optimal contract w∗ = (0.3417, 1.511, 3.511)

and the resulting optimal effort a∗ = 0.6446. Table 1 reports solutions for different levels

of the agent’s risk aversion η. For completion the table also reports the corresponding first-

best solutions8 indexed by FB. For η = 0, when the agent is risk-neutral, a continuum of

contracts exists. However, the intervals of values for w1 and w2 are economically irrelevant

since for w3 = 1 the optimal effort of a∗ = 1 results in zero probability of outcomes 1 and

2 and the first-best solution.

η U(w∗
1, w

∗
2, w

∗
3, a

∗) a∗ w∗
1 w∗

2 w∗
3 UFB aFB wFB

0 1 1 [0, 1) [0, 1] 3 1 1 3
1
4

0.6760 0.8260 0.2777 1.177 3.344 0.7471 0.7993 2.450
1
3

0.5723 0.7637 0.2879 1.273 3.441 0.6850 0.7541 2.332
1
2

0.3844 0.6446 0.3417 1.511 3.511 0.5814 0.6823 2.148
4
5

0.1292 0.4881 0.5314 1.798 3.296 0.4410 0.5918 1.926

2 -0.3444 0.2413 0.8749 1.817 2.416 0.1349 0.4196 1.544

4 -0.6102 0.1277 0.9657 1.597 1.866 -0.09165 0.3117 1.338

Table 1: Numerical solutions to the principal-agent problem as a function of η

8Omitting the incentive-compatibility constraint and maximizing the principal’s expected utility only

subject to the participation constraint leads to the first-best solution.
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4 Derivation of the Polynomial Optimization Approach

In this section we first review the mathematical foundation of Theorem 1 and then prove

the theorem. We also discuss the assumptions of the theorem as well as the limitations

of the polynomial optimization approach.

4.1 Mathematical Framework

First we introduce semidefinite programs, a class of convex optimization problems that

is relevant for our analysis. Next we define sums of squared polynomials and state rep-

resentation theorems for such polynomials. Then we describe how the representation

results allow us to simplify constrained polynomial optimization problems. And finally

we describe the extension to rational objective functions.

4.1.1 Semidefinite Programming

For a matrix M = (mij) ∈ Rn×n the sum of its diagonal elements,

tr(M) =
n∑

i=1

mii,

is called the trace of M . Note that

tr(CX) =
n∑

i,j=1

CijXij

for matrices C,X ∈ Sn is a linear function on the set Sn of symmetric n × n matrices.

Recall from the beginning of Section 3 the notation X < 0 for positive semidefinite

matrices. A semidefinite optimization problem (in standard form) is defined as follows.

Definition 1. Let C,Aj ∈ Rn×n for all j = 1, . . . ,m be symmetric matrices and b ∈ Rm.

We then call the following convex optimization problem a semidefinite program (SDP).

sup
X

tr(CX)

s.t. tr(AjX) = bj j = 1, . . . ,m

X < 0

(5)

Note that the (SDP) has a linear objective function and a closed convex feasible

region. Thus, semi-definite programs are a special class of convex optimization problems.

In fact, semidefinite programs can be solved efficiently both in theory and in practice, see

Vandenberghe and Boyd (1996) and Boyd and Vandenberghe (2004).

For the characterization of symmetric positive semidefinite matrices we need the fol-

lowing definition.
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Definition 2. Let M = (mij)i=1,...,n,j=1,...,n ∈ Rn×n a matrix and let I ⊂ {1, . . . , n}.
Then det((mij)i,j∈I×I) is called a principal minor. If I = {1, . . . , k} then det((mij)i,j∈I×I)

is called the leading principal minor.

Proposition 2. Let Q ∈ Rn×n be a symmetric matrix with rank m. Then the following

statements are equivalent.

(a) Q is positive semidefinite.

(b) All principal minors of Q are nonnegative.

(c) There exists a matrix V ∈ Rn×m with Q = V V T and m ≤ n.

(d) There exists a lower triangular matrix L ∈ Rn×n with nonnegative diagonal such that

Q = LLT .

(e) All eigenvalues are nonnegative.

Note here that the equivalent statements for positive semidefiniteness can be expressed

by polynomial equations and inequalities. Statement (b) gives a set of polynomial inequal-

ities. Statement (c) involves a system of polynomial equations. Statements (d) and (e)

are given by a system of equations and inequalities.

4.1.2 Polynomials and Sums of Squares

For the study of polynomial optimization it is necessary to first review a few fundamental

concepts from the study of polynomials in real algebraic geometry. Our brief review is

based upon the survey by Laurent (2009) and the book by Lasserre (2010).

The expression R[x1, . . . , xn] denotes the ring of polynomials in n variables over the

real numbers. Whenever possible we use the abbreviation R[x] with x = (x1, . . . , xn).

We denote the set of nonnegative integers by N. For a vector α ∈ Nn, we denote the

monomial xα1
1 · · · xαn

n by xα. The degree of this monomial is |α| =
∑n

i=1 αi. A polynomial

p ∈ R[x], p =
∑

α aαx
α is a sum of terms aαx

α with finitely many nonzero aα ∈ R. The
degree of p is deg(p) = max{α|aα ̸=0} |α|.

Let g1, . . . , gm ∈ R[x]. Then the set

K = {x ∈ Rn | gi(x) ≥ 0, ∀i = 1, . . . ,m}

is called a basic semi-algebraic set.

A central concept of polynomial optimization is the notion of a sum of squares.

14



Definition 3. A polynomial σ ∈ R[x] is called a sum of squares if there exists finitely

many polynomials p1, . . . , pm ∈ R[x] such that σ =
∑m

i=1 p
2
i . The expression Σ[x] ⊂ R[x]

denotes the set of sums of squares. And Σd[x] ⊂ R[x] denotes the set of sums of squares

up to degree d.

A sum of squares σ is always a nonnegative function. The converse however is not

always true, that is, not every non negative polynomial is a sum of squares. Also it is

clear that a polynomial can only be a sum of squares if it has even degree. Moreover, the

degree of each polynomial pi in the sum is bounded above by half the degree of σ. To see

the link to positive semi-definite matrices, we consider the vector

vd(x) = (xα)|α|≤d =
(
1, x1, . . . , xn, x

2
1, x1x2, . . . , xn−1xn, x

2
n, . . . , x

d
n

)T
of all monomials xα of degree at most d. This vector is of dimension

(
n+d
d

)
. There is a

strong connection between sums of squares, the vector vd(x) and positive semi-definite

matrices.

Lemma 1. [Lasserre (2010, Proposition 2.1)] A polynomial σ ∈ R[x] of degree 2d is

a sum of squares if and only if there exists a symmetric positive semidefinite
(
n+d
d

)
×
(
n+d
d

)
matrix Q such that σ = vd(x)

TQvd(x), where vd(x) is the vector of monomials in x of

degree at most d.

We illustrate this result in R.

4.1.3 Sum of Squares and SDP in R

We illustrate the relationship between finding sum of squares representations and SDPs

for the univariate case. For n = 1,

vd(x) =
(
1, x, x2, . . . , xd

)T
.

We can identify a polynomial pi(x) =
∑d

j=0 aijx
j with its vector of coefficients ai =

(ai0, ai1, . . . , aid) and write pi(x) = aivd(x). Next we aggregate m such polynomials in a

matrix-vector product
p1(x)

p2(x)
...

pm(x)

 =


a10 a11 . . . a1d

a20 a21 . . . a2d
...

...
...

...

am0 am1 . . . amd




1

x
...

xd
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Denoting the (m× (d + 1)) coefficient matrix on the right-hand side by V , we can write

a sum of squares as

σ(x) =
m∑
i=1

p2i (x) = (V vd(x))
T (V vd(x)) = vd(x)

TQvd(x)

for Q = V TV . By construction the matrix Q is symmetric, positive semi-definite and

has at most rank m. Note that if we start indexing Q with 0 then Qij with i + j = h

contributes to the term of σ with degree h.

Observe that finding a sum of squares representation for the polynomial σ(x) requires

finding a symmetric positive semi-definite matrix Q such that the polynomials on the left-

hand and right-hand side are identical. But that condition just requires the polynomials

to have identical coefficients for all monomials. If σ has degree 2d, then the coefficient

conditions are 2d+1 linear equations in the (d+1)(d+2)/2 unknown elements of Q. This

set of linear equations together with the requirement that Q is symmetric positive semi-

definite are just the constraints of an SDP. And so finding a sum of squares representation

of a univariate polynomial σ is equivalent to an SDP feasibility problem.

4.1.4 Sum of Squares Representation in R

For polynomials in a single variable x, the set of nonnegative polynomials and the set

Σ[x] of sums of squares are identical.

Lemma 2. [Laurent (2009, Lemma 3.5)] Any nonnegative univariate polynomial is a

sum of (at most) two squares.

We next consider nonnegative univariate polynomials on closed intervals. For a general

treatment it suffices to examine two cases, [−1, 1] and [0,∞). The next proposition states

that nonnegative polynomials on these intervals can be expressed via two sums of squares

and a polynomial that describes the respective interval via a semi-algebraic set. Note that

[−1, 1] = {x ∈ R | 1− x2 ≥ 0} and [0,∞) = {x ∈ R | x ≥ 0}.

Proposition 3. [Lasserre (2010, Theorems 2.6, 2.7), Laurent (2009, Theorems

3.21, 3.23)] Let p ∈ R[x] be of degree d.

(a) p ≥ 0 on [−1, 1] if and only if

p = σ0 + σ1 · (1− x2) σ0, σ1 ∈ Σ[x]

with deg(σ0), deg(σ1 · (1− x2)) ≤ d if d is even and deg(σ0), deg(σ1 · (1− x2)) ≤ d+1

if d is odd.
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(b) p ≥ 0 on [0,∞) if and only if

p = σ0 + σ1x σ0, σ1 ∈ Σ[x]

with deg(σ0), deg(xσ1) ≤ d.

These results depend critically on the specific description of the intervals via the

polynomials 1 − x2 and x, respectively. Other descriptions lead to weaker results with

representations involving higher degree sum of squares polynomials.

Proposition 3 can also be used to show more general cases. The univariate polynomial

f(x) is nonnegative on K = [a,∞), K = (−∞, b] and K = [a, b] if and only if

p(x) = f(x+ a) ≥ 0 ∀x ∈ [0,∞),

p(x) = f(b− x) ≥ 0 ∀x ∈ [0,∞),

p(x) = f((x(b− a) + (a+ b))/2) ≥ 0 ∀x ∈ [−1, 1],

respectively.

Next we describe the application of the representation results for nonnegative univari-

ate polynomials to polynomial optimization.

4.1.5 Polynomial Optimization in R

For a polynomial p ∈ R[x] and a nonempty semi-algebraic set K ⊂ R consider the

constrained polynomial optimization problem,

pmin = inf
x∈K

p(x). (6)

We can rewrite Problem (6) as follows,

sup
ρ
ρ

s.t. p(x)− ρ ≥ 0 ∀x ∈ K.

(7)

For any feasible ρ ∈ R the following inequality holds,

ρ ≤ pmin. (8)

Note that the constraints of the rewritten problem state that the polynomial p− ρ must

be nonnegative on the set K. Now consider the domain K = [−1, 1] = {x | 1− x2 ≥ 0}.
In this case applying part (a) of Proposition 3 enables us to rewrite the infinitely many

constraints of Problem (7). With the polynomial g defined by g(x) = 1 − x2 we obtain
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the following optimization problem,

sup
ρ,σ0,σ1

ρ

s.t. p− ρ = σ0 + σ1g

σ0, σ0 ∈ Σ[x]

(9)

Note that the equality constraint here signifies equality as polynomials. Lemma 1 enables

us to rewrite the optimization problem once more by replacing the unknown sums of

squares σ0 and σ1 by positive semi-definite matrices. We define the number dp =
⌈
deg(p)

2

⌉
for a polynomial p ∈ R[x]. According to Proposition 3 the number dp is an upper bound

for the degrees of σ0 and σ1. And so we can rewrite the optimization problem.

sup
ρ,Q(0),Q(1)

ρ

s.t. p− ρ = vTdpQ
(0)vdp + gvTdp−1Q

(1)vdp−1

Q(0), Q(1) < 0

Q(0) ∈ R(dp+1)×(dp+1), Q(1) ∈ Rdp×dp

vdp = (1, x, . . . , xdp)T , vdp−1 = (1, x, . . . , xdp−1)T

(10)

Note that the first functional constraint holds if and only if all coefficients (of identical

monomials on the left- and right-hand side) are identical. Thus this functional constraint

reduces to a set of linear constraints which only involve the coefficients of the terms. Let

p =
∑deg(p)

l=0 clx
l and write Q

(0)
ij , i, j = 0, 1, . . . , dp, for the (i, j)-th entry of the matrix Q(0)

(similarly for Q(1)). Then we can rewrite the first constraint of Problem (10),

c0 − ρ = Q
(0)
0,0 +Q

(1)
0,0,

cl =
∑
i+j=l

Q
(0)
ij +

∑
i+j=l

Q
(1)
ij −

∑
i+j=l−2

Q
(1)
ij l = 1, . . . , d.

(11)

This set of constraints is just a set of linear equations in the unknowns ρ and Q
(m)
ij . In

particular we observe that the final optimization problem is an SDP. Note that the positive

semi-definite constraint for the matrices Q(0) and Q(1) can be interpreted as polynomial

inequality constraints. This fact follows from Proposition 2.

The following proposition summarizes the relationship between the original problem

and the reformulation.

Proposition 4. [Lasserre (2010, Theorem 5.8)] If p(x) =
∑

i cix
i and K = {x ∈ R |

1− x2 ≥ 0} = [−1, 1] then problem (10) is equivalent to infx∈[−1,1] p(x) and both problems

have an optimal solution.
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The optimal solutions satisfy ρ = pmin. In sum, the constrained optimization problem

of minimizing a univariate polynomial on an interval of R reduces to an SDP, a convex

optimization problem.

4.1.6 Rational Objective Function

Jibetean and de Klerk (2006) prove an analogous result for the case of rational objective

functions. Let p(x), q(x) be two polynomials defined on a set K ⊂ Rn. Consider the

following optimization problem,

pmin = inf
x∈K

p(x)

q(x)
. (12)

We can rewrite this problem in polynomial form.

Proposition 5. [Jibetean and de Klerk (2006, Theorem 2)] If p and q have no

common factor and K is an open connected set or a (partial) closure of such a set then

(a) If q changes sign on K, then pmin = −∞.

(b) If q is nonnegative on K, problem (12) is equivalent to

pmin = sup{ρ | p(x)− ρq(x) ≥ 0, ∀x ∈ K}.

Now consider the univariate case, so let p, q ∈ R[x] and set d = max(dp, dq). For

K = [−1, 1] and g(x) = 1− x2, we can again use Proposition 3 and reformulate problem

(12),

sup
ρ,σ0,σ1

ρ

s.t. p− ρq = σ0 + gσ1

σ0 ∈ Σ2d, σ1 ∈ Σ2(d−1)

(13)

And so we can solve the constrained optimization problem (12) also as an SDP.

4.2 Proof of Theorem 1

In the review of the mathematical literature, we followed the notation of the survey by

Laurent (2009) and used the expressions sup and inf in the optimization problems. Since

the domain K is a compact interval, we can safely write max and min in the context of

our application. Now we are in the position to prove Theorem 1.
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Proof. Note that the upper level problem has not been altered. In particular we still

maximize over U . Thus to show that these problems are indeed equivalent it suffices to

see that any feasible point for (4) corresponds to a feasible point for (1) and vice versa.

Let (ŵ, â, ρ̂, Q̂(0), Q̂(1)) be a feasible point for problem (4). Then by inequality (8)

we have that ρ ≤ mina∈[−1,1] −V (ŵ, a) = −maxa∈[−1,1] V (ŵ, a) ≤ −V (ŵ, a) for any

a ∈ [−1, 1]. Thus by the equality condition −V (ŵ, â) = ρ we have that V (ŵ, â) =

maxa∈[−1,1] V (ŵ, a). Therefore â ∈ argmaxa∈[−1,1] V (ŵ, a) and V (ŵ, â) ≥ V . Hence

(ŵ, â) is a feasible point for (1).

Now let (ŵ, â) be a feasible point for (1). So â ∈ argmaxa∈[−1,1] V (ŵ, a). By Propo-

sition 5 there exist Q̂(0), Q̂(1) < 0 and a maximal ρ̂ such that the following system of

equations is satisfied

c0(ŵ)− ρ̂f0(ŵ) = Q̂
(0)
0,0 + Q̂

(1)
0,0

cl(ŵ)− ρ̂fl(ŵ) =
∑
i+j=l

Q̂
(0)
ij +

∑
i+j=l

Q̂
(1)
ij −

∑
i+j=l−2

Q̂
(1)
ij , l = 1, . . . , d.

Then ρ̂ = mina∈[−1,1] −V (ŵ, a) = −V (ŵ, â) and therefore (ŵ, â, ρ̂, Q̂(0), Q̂(1)) is feasible

for (4).

The proof establishes that the feasible region of the original principal-agent problem (1)

is a projection of the feasible region of the optimization problem (4). The first four

constraints of problem (4) capture the agent’s expected utility maximization problem.

The constraints (4a)–(4d) force any value of a in a feasible solution to be the agent’s

optimal effort choice as well as the value of ρ to be the corresponding maximal expected

utility value. Put differently, for a given contract w the first four constraints ensure an

optimal effort choice by the agent.

With some additional assumptions, we can solve the optimization problem (4) to global

optimality.

Corollary 1. Suppose Assumption 4 holds and that the functions ci, fi : W → R (in

Assumption 4) are polynomials in w ∈ W . Moreover, assume that U is a polynomial,

A = [−1, 1], and W is a basic semi-algebraic set. Then (4) is a polynomial optimization

problem over a basic semi-algebraic set.

Proof. The only problematic constraints are the semi-definiteness constraints for the ma-

trix. However, the positive definiteness condition on the Q(i) is equivalent to the condition

that the principal minors, that are themselves polynomials, are nonnegative. Thus the

set of constraints defines a semi-algebraic set.
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If the conditions of the corollary are satisfied, we can use the methods employed in

GloptiPoly, see Henrion, Lasserre, and Löfberg (2009), to find a globally optimal solution

to the principal agent problem. That is, we can obtain a numerical certificate of global

optimality. We use such an approach in Example 1 to ensure global uniqueness.

4.3 Discussion of Assumptions and Limitations

Theorem 1 rests on two key assumptions, namely that the agent’s choice set is a compact

interval and his expected utility function is rational in effort. The review of the mathe-

matical background and the derivation of the theorem show that we can easily dispense

with the compactness assumption and replace it by an unbounded interval such as [0,∞).

While the second assumption limits the generality of the theorem, it does include the

frequently employed model specification of agents’ utility functions that are separable in

wage and effort and feature a linear cost of effort (together with a rational probability

distribution of outcomes).

Corollary 1 imposes additional assumptions on the utility functions and the set of

wages; the principal’s expected utility is polynomial and the agent’s expected utility is

rational in wages; the set of wages is a basic semi-algebraic set. The assumption on the set

of wages appears to be innocuous. The assumptions on the utility functions rule out many

standard utility functions such as exponential or logarithmic utility functions. Moreover,

the principal’s utility cannot exhibit constant risk aversion. Although the assumption on

the principal’s utility function is rather strong, it includes the popular special case of a

risk-neutral principal and a polynomial probability distribution. Note that the agent’s

utility can be of the CRRA type. If the assumptions of Corollary 1 do not hold, we can still

attempt to solve the final NLP with standard nonlinear optimization routines. Moreover,

by invoking the Weierstrass approximation theorem that every continuous function can

be uniformly approximated as closely as desired on a compact interval by a polynomial,

we can argue that, at least from a theoretical viewpoint, even the assumptions on the

expected utility functions in both the theorem and its corollary are not as limiting as

they may appear at first.

The most serious limitation of our polynomial optimization approach is that it is not

suited for a subsequent traditional theoretical analysis of the principal-agent model. A

central topic of the economic literature on moral hazard problems has been the study of

the nature of the optimal contract and its comparative statics properties. Studies invoking

the first-order approach rely on the KKT conditions for the relaxed principal’s problem to

perform such an analysis. For example, Rogerson (1985) considers the case of a separable

utility function with linear cost of effort; using our notation, we can write (slightly abusing
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notation) v(wi, a) = v(wi)+a. Rogerson (1985) states the KKT conditions for the relaxed

principal’s problem, part of which are the equations

u′(yi − wi)

v′(wi)
= λ+ δ

µ′(yi|a)
µ(yi|a)

(14)

for i = 1, 2, . . . , N with Lagrange multipliers λ and δ. Rogerson (1985) then uses these

equations not only to prove the validity of the first-order approach but also to show

that the optimal wage contract is increasing in the output. An analogous approach to

the analysis of the optimal contract has been used in many studies, see, for example,

Holmström (1979), Jewitt (1988) and Jewitt, Kadan, and Swinkels (2008). The KKT

conditions for the relaxed principal’s problem are rather simple since that problem has only

two constraints, the participation constraint and the first-order condition for the agent’s

problem. The optimization problem (4) stated in Theorem 1, however, has many more

constraints. In addition, the constraints characterizing the agent’s optimal effort choice

are not intuitive. As a result, we cannot follow the traditional approach for analyzing the

principal’s problem based on the new optimization problem (10).

Since we cannot follow the traditional theoretical route, we would instead have to

rely on numerical solutions of many instances of problem (4) for a further analysis of

the properties of the optimal contract. While at first such a numerical analysis may look

rather unattractive compared to the theoretical analysis based on the first-order approach,

it also offers some advantages. The first-order approach requires very strong assumptions

and so applies only to a small set of principal-agent problems. A numerical analysis based

on our polynomial optimization approach can examine many other problems that fall

outside the classical first-order approach.

Economic theorists often make strong assumptions that allow them to prove theorems.

They will generally acknowledge that their assumptions limit their analysis to a small,

often measure zero, subset of economically interesting specifications of some more gen-

eral and realistic theory. The only way they can justify this focus is if they believe that

the results of these special cases are representative of the results in more general cases,

even ones that fall far outside the set of cases their theorems examine. They believe that

the assumptions are mainly necessary for the theoretical analysis leading to theoretical

results and not for the theoretical results themselves. And, of course, this point certainly

has some logical validity, the failure of sufficient conditions does not imply the failure

of the conclusion. If there are no methods for examining the more general cases, then

this approach is the only option an economist has. This paper allows us to examine the

described belief in the context of principal-agent problems. Our polynomial optimization

approach enables us to examine model properties for much larger classes of models than
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previously possible. In particular, a numerical examination of models based on the poly-

nomial approach offers great advantages over an analysis based on the relaxed principal’s

problem.

The relaxed principal’s problem will generally be a rather difficult nonlinear program

(NLP) for many models. For example, it will have a nonlinear equation as a constraint (if

the optimal effort level is interior), unless the agent’s first-order condition is linear in both

w and a. As a consequence, the principal’s new problem will be a non-convex NLP for any

utility function of the principal. The analysis of non-convex NLPs faces many theoretical

and numerical difficulties. For example, the Karush-Kuhn-Tucker (KKT) conditions are

often only necessary and not sufficient. Among the KKT solutions may be local maxima

that are not solutions of the NLP. NLP solvers, therefore, cannot guarantee convergence

to a global maximum. Furthermore, it is often rather difficult to prove that a constraint

qualification holds, which is an important sufficient condition for the KKT conditions to

even be necessary. However, as far as we can tell, this difficulty has been largely ignored

in the literature on moral hazard problems.9 Our approach following the corollary and

using polynomial methods circumvents these problems. In fact, the approach guarantees

a globally optimal solution.

5 The Polynomial Optimization Approach for A ⊂ RL

Principal-agent models in which the agent’s action set is one-dimensional dominate not

only the literature on the first-order approach but also the applied and computational

literature, see for example, Araujo and Moreira (2001), Judd and Su (2005), Armstrong,

Larcker, and Su (2010). However, the analysis of linear multi-task principal-agent models

in Holmström and Milgrom (1991) demonstrates that multivariate agent problems exhibit

some fundamental differences in comparison to the common one-dimensional models. For

example, the compensation paid to the agent does not only serve the dual purpose of

incentive for hard work and risk-sharing but, in addition, influences the agent’s attention

among his various tasks. The theoretical literature that allows the set of actions to be

multi-dimensional, for example, Grossman and Hart (1983), Kadan, Reny, and Swinkels

(2011), and Kadan and Swinkels (2012), focuses on the existence and properties of equi-

libria. To the best of our knowledge, the first-order approach has not been extended to

models with multi-dimensional action sets.

9For example, Rogerson (1985) makes no reference to a constraint qualification in his derivation

of (14). The same is true for Holmström (1979), Jewitt (1988), Conlon (2009), Sinclair-Desgagné (1994),

and Jewitt, Kadan, and Swinkels (2008) when they state the same or an analogous first-order condition

for the relaxed principal’s problem.
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We now extend our polynomial optimization approach to principal-agent models in

which the agent has more than one decision variable, so a ∈ A ⊂ RL. For this purpose,

we first describe multivariate polynomial optimization. Subsequently we state and prove

a generalization of Theorem 1. We complete our discussion with an illustration of the

multi-dimensional approach by a numerical example.

5.1 Optimization of Multivariate Polynomials

We observed in the previous section that the reformulation of univariate polynomial opti-

mization problems involves two steps. First, we need to rewrite the optimization problem

such that the optimal value is characterized by a(n infinite) set of nonnegativity con-

straints. In the second step, we use a sum of squares representation of nonnegative

polynomials to replace the nonnegativity constraints by finitely many convex (SDP-style)

constraints in order to obtain an equivalent optimization problem. Our method for multi-

variate optimization follows the same general two-step reformulation approach. However,

we encounter an important difficulty. While the two sets of nonnegative and positive

polynomials are identical for univariate polynomials, this identity does not hold true for

multivariate polynomials. A classical result of Hilbert (1888) states that this identity

holds only for quadratic multivariate polynomials and for degree 4 polynomials in two

variables; or, equivalently, it holds for degree 4 homogeneous polynomials in three vari-

ables. The general lack of the identity of the sets of nonnegative and positive multivariate

polynomials forces us to work directly with positive polynomials. As a result, our final

optimization problem is not equivalent to the original principal-agent problem. Instead,

it delivers (only) an upper bound on the optimal objective function value. Nevertheless

this approach also proves very useful.

We again rely on Laurent (2009) and Lasserre (2010) for a review of mathematical

results.

5.1.1 Multivariate Representation and Optimization

Putinar’s Positivstellensatz is the analogue of the univariate sum of squares representation

result from Proposition 3 for the multivariate case.

Proposition 6. [Putinar’s Positivstellensatz, Lasserre (2010, Theorem 2.14)]

Let f, g1 . . . , gm ∈ R[x] be polynomials and K = {x ∈ Rn | g1(x) ≥ 0, . . . , gm(x) ≥ 0} ⊂
Rn a basic semi-algebraic set such that at least one of the following conditions holds,

(1) g1, . . . , gm are affine and K is bounded; or
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(2) for some j the set {x ∈ Rn | gj(x) ≥ 0} is compact.

If f is strictly positive on K then

f = σ0 +
m∑
i=1

σigi (15)

for some σ0, . . . , σm ∈ Σ[x].

The assumptions of Putinar’s Positivstellensatz are not as restrictive as they may

appear at first glance. For example, if we know an upper bound B such that ∥x∥2 ≤ B

for all x ∈ K, then we can add the redundant ball constraint B2 −
∑

i x
2
i ≥ 0. Note that

in contrast to Proposition 3 for univariate polynomials, Putinar’s Positivstellensatz does

not provide any bounds on the degree of the sums of squares σj.

For a multivariate polynomial p ∈ R[x1, x2, . . . , xn] and a nonempty semi-algebraic set

K = {x ∈ Rn | g1(x) ≥ 0, . . . , gm(x) ≥ 0} consider the constrained polynomial optimiza-

tion problem,

pmin = inf
x∈K

p(x). (16)

Similar to the univariate case, we can rewrite this problem,

sup
ρ
ρ

s.t. p(x)− ρ > 0 ∀x ∈ K

(17)

Since Putinar’s Positivstellensatz provides a representation for strictly positive polynomi-

als and does not bound the degrees of the sums of squares in the representation, we cannot

provide a reformulation of the optimization problem (17) in the same simple fashion as

we did in the univariate case. Instead we now consider a relaxation of the problem by

restricting the degrees of the involved sums of squares. For d ≥ max {dp, dg1 , . . . , dgm}
consider the relaxation

ρd = sup
ρ,σ0,σ1,...,σm

ρ

s.t. p− ρ = σ0 +
m∑
i=1

σigi

σ0 ∈ Σ2d, σi ∈ Σ2(d−dgi )

(18)
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This problem is again an SDP and thus can be written as

ρd = sup
ρ,Q(0),Q(1),...,Q(m)

ρ

s.t. p− ρ = vTdQ
(0)vd +

m∑
i=1

giv
T
d−dgi

Q(i)vd−dgi

Q(0), Q(i) < 0

Q(0) ∈ R(
n+d
d )×(n+d

d ), Q(i) ∈ R(
n+d−dgi
d−dgi

)×(n+d−dgi
d−dgi

)

vd vector of monomials xα up to degree d,

vd−dgi
vector of monomials xα up to degree d− dgi

(19)

The equality constraint here signifies again equality as polynomials. Thus we just have

to compare the coefficients of the polynomials on the left-hand and right-hand side.10 If

the problem is infeasible, then ρd = −∞.

The optimal value ρd then converges from below to the optimal value pmin of infx∈K p(x).

In particular even if we do not obtain an explicit solution we obtain a lower bound on

the optimal value pmin. In many cases the convergence is finite, that is, for some finite

d ≥ max {dp, dg1 , . . . , dgm} it holds that ρd = pmin. We have the following theorem:

Proposition 7. [Lasserre (2010, Theorem 5.6)] If the assumptions of Putinar’s Pos-

itivstellensatz hold, then the optimal solution ρd of the relaxed problem (18) converges

(from below) to the optimal value pmin of the original problem (16) as d→ ∞.

5.1.2 Rational Objective Function

Jibetean and de Klerk (2006) also prove analogous results for the case of multivariate

rational functions. Recall the optimization problem (12)

pmin = inf
x∈K

p(x)

q(x)
.

with p, q ∈ R[x] and K = {x ∈ Rn | g1(x) ≥ 0, . . . , gm(x) ≥ 0}. For such a set K, the fol-

lowing proposition states that the weak inequality in the definition of pmin in Proposition 5

can be replaced by a strict inequality.

Proposition 8. [Jibetean and de Klerk (2006, Lemma 1)] Suppose that K is the

closure of some open connected set. Also suppose the assumptions of Proposition 5 hold.

If p and q have no common factor then

pmin = sup{ρ | p(x)− ρq(x) > 0, ∀x ∈ K}.
10To avoid a messy notation we will forgo expressively writing out those equations in the multivariate

case.
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Similar to the polynomial case we define the relaxation for d ≥ max {dp, dg1 , . . . , dgm},

ρd = sup
ρ,σ0,σ1,...,σm

ρ

s.t. p− ρq = σ0 +
m∑
i=1

σigi

σ0 ∈ Σ2d, σ1 ∈ Σ2(d−dgi )

(20)

Proposition 9. [Jibetean and de Klerk (2006, Theorem 9)] Under the assumptions

of Proposition 5 and Putinar’s Positivstellensatz, the following statements hold.

(a) If pmin = −∞, then ρd = −∞ for all d = 1, 2, . . ..

(b) If pmin > −∞, then ρd ≤ ρd+1 ≤ pmin for all d = 1, 2, . . ., and limd→∞ ρd = pmin.

5.2 The Multivariate Polynomial Optimization Approach

We now consider the principal-agent problem with a multi-dimensional set of actions,

A ⊂ RL. We make the following assumption.

Assumption 5 (Set of Actions). The set of actions, A =
{
a ∈ RL | g1(a) ≥ 0, . . . , gm(a) ≥ 0

}
,

is a compact semi-algebraic set with a nonempty interior.

A multi-dimensional version of Assumption 4, the assumption that the agent has a

rational expected utility function, imposes

−V (w,a) = −
N∑
j=1

v(wj,a)pj(a) =

∑
α cα(w)aα∑
α fα(w)aα

.

Applying the general relaxation (19) to the agent’s expected utility optimization problem,

we obtain the following relaxation for that problem.

sup
ρ,Q(0),Q(1),...,Q(m)

ρ

s.t.
∑
α

cα(w)bα − ρ
∑
α

fα(w)bα = vTdQ
(0)vd +

m∑
i=1

giv
T
d−dgi

Q(i)vd−dgi

Q(0), Q(i) < 0

Q(0) ∈ R(
n+d
d )×(n+d

d ), Q(i) ∈ R(
n+d−dgi
d−dgi

)×(n+d−dgi
d−dgi

)

vd vector of monomials bα up to degree d,

vd−dgi
vector of monomials bα up to degree d− dgi

(21)

The equality in the first constraint signifies an equality of the polynomials on the left-hand

and right-hand side in the variables b. So, once again we need to equate the coefficients
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of two polynomials. These equations in turn are polynomials in the matrix elements Q
(l)
ij ,

l = 0, 1, . . . ,m, and the variable ρ. Next we use Proposition 2 and replace the positive

semi-definite matrices Q(i) by L(i)

(
L(i)

)T
, where L(i) are lower triangular matrices (with

a nonnegative diagonal). This transformation allows us to drop the explicit constraints

on positive semi-definiteness.

For a reformulation of the original principal-agent problem from a bilevel problem

to a nonlinear program, we need to characterize the optimal choice of the agent via

equations or inequalities. In the case of one-dimensional effort, this reformulation is (4d),

the generalization of which for multi-dimensional effort would be

d∑
i=0

ci(w)ai − ρ

(
d∑

i=0

fi(w)ai

)
= 0.

Unfortunately, due to the relaxation of the agent’s problem we cannot impose this con-

straint, the resulting nonlinear program would most likely be infeasible. Instead, we use

an idea of Couzoudis and Renner (forthcoming) who allow for solutions of optimization

problems to be only approximately optimal; we do not force the left-hand side to be zero

but instead only impose a small positive upper bound.

Now we are in the position to state and prove our second theorem, a multivariate

extension of Theorem 1. As before, we can safely replace the expressions sup and inf by

max and min in the context of our application.

Theorem 2. Suppose the agent’s expected utility maximization problem satisfies Assump-

tion 5 and the multi-dimensional version of Assumption 4. Let vk be the vector of mono-

mials in b1, . . . , bL up to degree k. Let d ∈ N and ε > 0. Including ρ ∈ R and lower

triangular matrices L(0) ∈ R(
n+d
d )×(n+d

d ) and L(i) ∈ R(
n+d−dgi
d−dgi

)×(n+d−dgi
d−dgi

)
for i = 1, . . . ,m, as

additional decision variables, define the following relaxation of the principal-agent problem

(1):

max
w,a,ρ,L(0),...L(m)

U(w, a) subject to (22)

∑
α

cα(w)bα − ρ
∑
α

fα(w)bα = vT
dL(0)L

T
(0)vd +

m∑
i=1

giv
T
d−dgi

L(i)L
T
(i)vd−dgi

(22a)

ε
∑
α

fα(w)aα ≥
∑
α

cα(w)aα − ρ
∑
α

fα(w)aα (22b)

d∑
i=0

ci(w)ai ≤ −V

(
d∑

i=0

fi(w)ai

)
(22c)

gi(a) ≥ 0 ∀ i = 1, 2, . . . ,m (22d)

w ∈ W (22e)

This optimization problem has the following properties.

28



(a) Any feasible point,
(
ŵ, â, ρ̂, L̂(0), . . . , L̂(m)

)
, satisfies the inequality

max
a∈A

V (ŵ,a)− V (ŵ, â) ≤ ε. (23)

(b) Let (w,a) be a solution of the principal-agent problem (1). Then for any ε > 0 there

exists d(ε) ∈ N and ρ, L(0), . . . , L(m), such that
(
w,a, ρ, L(0), . . . , L(m)

)
is feasible for

the relaxation (22) for d = d(ε).

(c) Let (w,a) be an optimal solution to (1). For any ε, let d(ε) be as in (b). De-

note by u(ε) the optimal value of the relaxation (22) for given ε and d = dε. Then

limε→0+ u(ε) = U(w,a).

(d) Again, let (w,a) be an optimal solution to (1) and for any ε, let d(ε) be as in (b).

Then, the set of limit points for ε→ 0+ of any sequence of optimal solutions to (22),(
w∗(ε),a∗(ε), ρ∗(ε), L∗

(0)(ε), . . . , L
∗
(m)(ε)

)
, projected onto W ×A, is contained in the

set of optimal solutions to the original principal-agent problem (1).

Before we prove the theorem, we briefly describe the optimization problem (22). This

problem has the same objective function as the original principal-agent problem (1). Con-

straint (22a) uses a sum of squares representation of positive polynomials to ensure that

for a contract w chosen by the principal, −V (w,a) ≥ ρ for all a ∈ A. It is important

to emphasize that this equation does not only hold for the optimal choice but in fact for

all possible a ∈ A. Therefore, for the purpose of this constraint we need to duplicate

the effort vector a; in the functional equation (22a) we denote effort by b. Thus again

b is not a variable in the optimization problem. We obtain the equations by compar-

ing the coefficients of the polynomials in b. The positive semi-definite matrices in the

relaxation of the agent’s problem (21) are represented via products of lower triangular

matrices. Proposition 2 shows that any positive semi-definite matrix can be represented

in this fashion (even having the property that all diagonal elements are nonnegative). Put

differently, constraint (22a) ensures that −ρ is an upper bound on the agent’s possible

expected utility levels. Next, constraint (22b) imposes a lower bound on the agent’s ex-

pected utility level, namely V (w,a)+ε ≥ −ρ. Therefore, the constraints (22a) and (22b)

force the value of a in any feasible solution to result in a utility for the agent satisfying

−ρ− ε ≤ V (w,a) ≤ −ρ. That is, for a given contract w the first two constraints ensure

an effort choice by the agent that is within ε of being optimal. The last three constraints

are straightforward. Constraint (22c) is the transformed participation constraint for the

agent’s rational expected utility function. Constraint (22d) defines the set of the feasible

actions and constraint (22e) is just the constraint on the compensation scheme from the

original principal-agent problem (1).
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Proof. Under the assumptions of the theorem, the agent’s constraints satisfy the condi-

tions of Putinar’s Positivstellensatz and so we obtain the sums-of-squares representation

for the agent’s problem. For fixed d we then restrict the degree of the sum of squares

coefficients as is done in the relaxation.

(a) Every feasible point
(
ŵ, â, ρ̂, L(0), . . . , L(m)

)
provides an upper bound −ρ̂ on the max-

imal value of V (ŵ,a) = −
∑

α cα(ŵ)aα∑
α fα(ŵ)aα , since (22a) implies that∑

α

cα(w)bα − ρ̂
∑
α

fα(w)bα ≥ 0

and so, −ρ̂ ≥ maxa∈A V (ŵ,a) ≥ V (ŵ, â). Moreover, constraint (22b) implies that

ε ≥ −ρ̂− V (ŵ, â) ≥ max
a∈A

V (ŵ,a)− V (ŵ, â).

Thus, condition (23) holds.

(b) Under the assumptions of the theorem, Proposition 9 implies that for each fixed w

and a given ε > 0 there exists a d such that V (w,a)− ρ has the representation (15)

of Putinar’s Positivstellensatz with degree d coefficients. For this d, problem (22) has

a nonempty feasible region.

(c) Recall the agent’s optimal value function Ψ : W → R from the proof of Proposition 1.

The projection of the set of feasible points of problem (22) to W × A is a subset of

S(ε) = {(w,a) ∈ W × A | Ψ(w)− V (w,a) ≤ ε}

and, by (b), contains (w,a). Let v(ε) = max(w,a)∈S(ε) U(w,a). Then

U(w,a) ≤ u(ε) ≤ v(ε).

Furthermore, since Ψ and V are continuous (Berge’s Maximum Theorem), the set

S(ε) is upper hemicontinuous and uniformly compact near 0.11 By Hogan (1973,

Theorem 5) it follows that v is upper semi-continuous and thus we have

U(w,a) ≤ lim inf
ε→0+

u(ε) ≤ lim sup
ε→0+

u(ε) ≤ lim sup
ε→0+

v(ε) ≤ v(0) = U(w,a)

Therefore, limε→0+ u(ε) = U(w,a).

11Upper hemicontinuity at 0 means that for any sequence εk → 0, sk ∈ S(εk) and sk → s implies

s ∈ S(0).
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(d) Consider any limit point (w0,a0) ∈ W ×A and any sequence (wε,aε) converging to

it for ε → 0. Condition (c) implies that U(wε,aε) → U(w,a). By continuity of Ψ

and V we also have

lim
ε→0+

(Ψ(wε)− V (wε,aε)) = Ψ(w0)− V (w0,a0) = 0.

Thus (w0,a0) is feasible for (1) and attains the optimal value.

This completes the proof of Theorem 2.

Some comments on the technical convergence results of Theorem 2 are in order. For

the one-dimensional effort case, Theorem 1 provides a single well-defined optimization

problem that is equivalent to the original principal-agent problem. Ideally, we would like

to obtain a similar result for the multi-dimensional effort case. Unfortunately, in gen-

eral that is impossible. A comparison of the sum of squares representation results for

univariate and multivariate polynomials reveals the critical difference between the two

cases. Proposition 3, the ‘Positivstellensatz’ for univariate polynomials, provides a sum

of squares representation of nonnegative univariate polynomials with an explicit (small)

bound on the degree of the involved sums of squares. Proposition 6, Putinar’s Positivstel-

lensatz, provides a sum of squares representation of positive multivariate polynomials;

however, there is no a-priori upper bound on the degree of the involved sums of squares.

In fact, from a purely theoretical viewpoint, the necessary degree may be infinite. As a

result, any finite-degree representation as in (18) may only constitute a relaxation of the

original polynomial optimization problem.

Once we have computed a solution we can always verify that it is feasible. To accom-

plish this we fix w and solve the polynomial optimization problem for the agent to global

optimality using GloptiPoly (Henrion, Lasserre, and Löfberg 2009).

In light of the theoretical difficulties for general multivariate polynomials, it is of

great interest to characterize polynomial optimization problems that offer a guaranteed

convergence of the relaxation for finite d. If both the objective function and the constraints

are s.o.s. convex, then the convergence is finite, see Lasserre (2010, Theorem 5.15).12 Also,

if the objective function is strictly convex and the constraints are convex, then convergence

is finite, see Lasserre (2010, Theorem 5.16). The problem of finite convergence continues

to be an active research issue in algebraic geometry. For example, Nie (2012) proved finite

convergence under a regularity condition on the set of constraints. His approach requires

a reformulation of the problem by adding constraints consisting of minors of a Jacobian

derived from the KKT conditions. Unfortunately, it appears to be rather difficult to check

the regularity condition in applications.

12A polynomial f is called s.o.s. convex, iff ∇2f = WWT for some matrix W .
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As a final remark, we point out that Schmüdgen’s Positivstellensatz, see Schmüdgen

(1991), yields a representation of multivariate positive polynomials that is different than

that of Putinar’s Positivstellensatz. This representation is slightly more general but re-

quires higher degree sums of squares. Therefore, it appears to be less attractive for

economic applications.

5.3 A Multivariate Example

Example 2. Let the set of outcomes be {0, 3, 6} with probabilities{
1 + a/2 + b

1 + a+ b
,

b

1 + a+ b
,
a/2− b

1 + a+ b

}
,

satisfying the constraints b ≥ 0 and a−2b ≥ 0, which assure that the probability functions

are nonnegative. The outcome distribution has mean and variance

3(a− b)

1 + a+ b
and

9 (2a+ a2 − 3b+ ab− 4b2)

(1 + a+ b)2
,

respectively. Note that the effort a increases both the expected value and the variance of

the outcome. On the contrary, the effort b decreases the expectation and the variance.

The principal’s and the agent’s Bernoulli utility functions are

u(y, w) = − (−6− w + y)2 and v(a, b, w) = (1 + a+ b)

(
−a− b

10
+ log (1 + w)

)
,

respectively. The expected utility of the agent is

1

10

(
−10a− 10a2 − b− 11ab− b2 + 10b log (1 + w2) + 5(a− 2b) log (1 + w3)

)
+(

1 +
a

2
+ b
)
log (1 + w1)

and the expected utility of the principal is

−a (36 + 12w1 + w2
1 + w2

3) + 2 ((6 + w1)
2 + b (45 + 12w1 + w2

1 + 6w2 + w2
2 − w2

3))

2(1 + a+ b)
.

We observe that the largest degree in the variables a and b is two. So, we can choose

the relaxation order to be one, that is, all the matrices appearing will be of size 3 × 3,

Lk = (sk,i,j)i,j=1,2,3, where Lk is a lower triangular matrix with nonnegative diagonal. The

sum of squares multipliers now appear as follows

σk =s
2
k,1,1 + 2ask,1,1sk,2,1 + a2(s2k,2,1 + s2k,2,2) + 2bsk,1,1sk,3,1 + b2(s2k,3,1 + s2k,3,2 + s2k,3,3)+

ab(2sk,2,1sk,3,1 + 2sk,2,2sk,3,2).
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Thus the coefficients in the variables a, b of the following polynomial have to be zero

V (a, b, w1, w2, w3) + ρ+ σ0 + bσ1 + (a− 2b)σ2 + (1− a)σ3.

This leads to the following equations

0 =s21,3,1 + s21,3,2 + s21,3,3 − s22,3,1 − s22,3,2 − s22,3,3

0 =
1

2

(
s22,2,1 + s22,2,2

)
− s23,2,1 − s23,2,2

0 =− 1 + s20,2,1 + s20,2,2 + s2,1,1s2,2,1 − 2s3,1,1s3,2,1 + s23,2,1 + s23,2,2

0 =s21,2,1 + s21,2,2 − s22,2,1 − s22,2,2 + s2,2,1s2,3,1 + s2,2,2s2,3,2 − 2(s3,2,1s3,3,1 + s3,2,2s3,3,2)

0 =− 11

10
+ 2(s0,2,1s0,3,1 + s0,2,2s0,3,2) + 2s1,1,1s1,2,1 − 2s2,1,1s2,2,1+

s2,1,1s2,3,1 − 2s3,1,1s3,3,1 + 2(s3,2,1s3,3,1 + s3,2,2s3,3,2)

0 =2(s1,2,1s1,3,1 + s1,2,2s1,3,2)− 2(s2,2,1s2,3,1 + s2,2,2s2,3,2) +
1

2

(
s22,3,1 + s22,3,2 + s22,3,3

)
−

s23,3,1 − s23,3,2 − s23,3,3

0 =− 1

10
+ s20,3,1 + s20,3,2 + s20,3,3 + 2s1,1,1s1,3,1 − 2s2,1,1s2,3,1 + s23,3,1 + s23,3,2 + s23,3,3

0 =ρ+ s20,1,1 + s23,1,1 + log (1 + w1)

0 =− 1

10
+ 2s0,1,1s0,3,1 + s21,1,1 − s22,1,1 + 2s3,1,1s3,3,1 + log (1 + w1)+

log (1 + w2)− log (1 + w3)

0 =− 1 + 2s0,1,1s0,2,1 +
s22,1,1
2

− s23,1,1 + 2s3,1,1s3,2,1 +
1

2
log (1 + w1) +

1

2
log (1 + w3).

We set the reservation utility to 3
2
and solve this problem with the solver Ipopt. We

cannot use Gloptipoly here since the number of variables is too large. We obtain the

solution,

a = 0.34156, b = 0.17078, w1 = 2.7295, w2 = 4.0491, w3 ≥ 0.

The principal’s expected utility is −73.210 and the agent’s is 3
2
.

6 Conclusion

In this paper we have presented a polynomial optimization approach to moral hazard

principal-agent problems. Under the assumption that the agent’s expected utility func-

tion is a rational function of his effort, we can reformulate the agent’s maximization

problem as an equivalent system of equations and inequalities. This reformulation allows

us to transform the principal-agent problem from a bilevel optimization problem to a

nonlinear program. Furthermore, under the assumptions that the principal’s expected
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utility is polynomial and the agent’s expected utility is rational in wages (as well as mild

assumptions on the effort set and the set of wage choices), we show that the resulting

NLP is a polynomial optimization problem. Therefore, techniques from global polyno-

mial optimization enable us to solve the NLP to global optimality. After this analysis

of principal-agent problems with a one-dimensional effort choice for the agent, we have

also presented a polynomial optimization approach for problems with multi-dimensional

effort sets. The solution approach for solving such multi-dimensional problems rests on

the same ideas as the approach for the one-dimensional effort model, however, it is tech-

nically more difficult. Most importantly, we cannot provide an exact reformulation of the

agent’s problem but only a relaxation of that problem. Despite this theoretical limitation,

the relaxation appears to be often exact in applications.

Our polynomial optimization approach has a number of attractive features. First,

we need neither the Mirrlees-Rogerson (or Jewitt) conditions of the classical first-order

approach nor the assumption that the agent’s utility function is separable. Second, un-

der the additional aforementioned assumptions on the utility functions, the final NLP is

a polynomial problem that can be solved to global optimality without concerns about

constraint qualifications. Third, unlike the first-order approach, the polynomial approach

extends to models with multi-dimensional effort sets.

The technical assumptions underlying the polynomial approach, while limiting, are

not detrimental. The most serious limitation of our polynomial optimization approach

is that it is not suited for a subsequent traditional theoretical analysis of the principal-

agent model. Despite this shortcoming, the polynomial approach can serve as a useful

tool to examine the generality of the insights derived from the very restrictive first-order

approach. The ability of the approach to find global solutions to principal-agent problems

is one of its hallmarks.
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