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Abstract

In Turkey, as in many other countries, female students perform better in high
school and have higher test scores than males. Nevertheless, men still predominate
at highly selective programs that lead to high-paying careers. The gender gap at
elite schools is particularly puzzling because college admissions are based entirely
on nationwide exam scores. Using detailed administrative data from the central-
ized college entrance system, I study the impact of gender differences in preferences
for programs and schools on the allocation of students to colleges. Controlling for
test score and high school attended, I find that females are more likely to apply
to lower-ranking schools, whereas males set a higher bar, revealing a higher option
value for re-taking the test and applying again next year. I also find that females
and males value program attributes differently, with females placing more weight on
the distance from home to college, and males placing more weight on program at-
tributes that are likely to lead to better job placements. Together, these differences
in willingness to be unassigned and in relative preferences for school attributes can
explain much of the gender gap at the most elite programs.
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1 Introduction

In the last few decades, the gender gap in education has changed remarkably in favor
of females. Females have begun to outperform males in general achievements. However,
while the share of males in total higher education enrollment has fallen considerably in

many countries, females still remain underrepresented in many high-wage occupations.

There are a number of studies that provide explanations for the reduction in gender
gap in higher education enrollment (Blau 1998; Goldin et. al. 2006; Jacob 2002; Peter
and Horn 2005; Reynolds and Burge 2004) and gender differences in major choices (Barres
2006; Friedman 1989; Polachek 1978, 1981; Turner and Bowen 1999; Xie and Shauman
2003; Zafar 2009). This literature suggest two plausible explanations for these gender
differences: Differences in preferences over college majors and differences in abilities and
achievement distributions. However, there is no comprehensive analysis incorporating
both explanations to elaborate the differences in higher education enrollment and major
choice decisions in order to understand the reasons behind the persistent underrepresenta-
tion of females in highly selective university programs and the poor reaction of the gender

gap in labor markets given the remarkable turn in female educational achievements.

To address this issue, I use detailed administrative data from the Turkish university
entrance test in 2008. Data includes applicants’ choices over all university programs, so
that I can directly investigate the potential differences in choices made by males and fe-

males conditional on test scores.

In Turkey, the transition to higher education from high school is highly centralized
and only possible through a standardized test conducted at a national level. After taking
the test and receiving their scores, applicants submit a list of higher education programs
in order of preferences and a central authority applies an algorithm to assign students
to each program taking into consideration the student’s preferences and their test score.
Given the large number of university applicants, the demand for higher education is quite
far from being met. In order to avoid over-enrollment in higher education, the system
is designed in a restrictive way. Driven by high competition for getting into a quality

program, there are a large number of applicants every year who retake the test because



they have failed to obtain a high enough test score to be placed in their desired program.
This is why, many applicants who are not satisfied with their test score choose to be

unassigned at the cost of not enrolling at all and retake the test the following year.

Retaking the test is costly and risky since applicants have to spend another year
preparing for the exam in a very competitive environment, and face also the uncertainty
of their new test score. Since the effect of uncertainty and competition could vary across
gendelﬂ, it is reasonable to expect that the willingness to be unassigned, reflected initially
in choice of university programs, and eventually in labor market outcomes, could differ by
gender. Applicants less willing to be unassigned to a university should, for example, have
a lower reservation university program, which means that they should apply to university

programs with lower cutoff scores.

In this paper, the institutional setting is used as a tool to investigate gender differences
in decision making that goes behind the universities listed on applications. I particularly
focus on describing the gender differences in the reservation university program and on
the potential effect that school choice might have on placement outcomes, and thus the
labor market. For this, I construct a measure that allows me to describe the willingness to
be unassigned to a university, and show that there are significant differences across gender
in this measure. I also elaborate the link between willingness to be unassigned and school
choice. This approach is used on the search to answer the following crucial questions:
Are there gender differences in willingness to be unassigned and if so are there any gender
differences in university program choices driven by differences in the willingness to be
unassigned? I assemble a unique dataset that allows me to address these questions. I use
the 2008 Student Selection Test (Ogrenci Secme Sinavi-OSS in Turkish) Applicant Sur-
vey provided by Student Selection and Placement Center (Ogrenci Secme ve Yerlestirme
Merkezi-OSYM in Turkish) together with administrative data containing the choice lists
submitted by each applicant and the information on test scores in each field, high school

information, and personal achievements. I also consider the characteristics of different

'Recent studies provide evidence suggesting that there are significant gender differences in attitudes
towards risk and competition and in performance in competitive environments. Literature on gender
differences in risk preferences and reaction to competition shows that females are more risk-averse than
males and they do not only avoid competition but also perform worse under competition (Dohmen and
Falk 2006; Gneezy et al. 2003; Niederle and Vesterlund 2005).



cities, universities, and programs from each student’s choices.

My results show that, controlling for test scores, high-school and other individual
characteristics, girls are less willing to be unassigned and they are more likely to choose
low profile schools as their lowest option and to get assigned to lower cutoff score pro-
grams. Finally, according to results from rank ordered logit model estimations, girls are
more likely than boys to be concerned about admission probability rather than other
attributes, such as foreign language as the instruction language, which is potentially a

valuable asset for the labor market.

The focus of the paper is on the effect of heterogeneity in the willingness to be unas-
signed on the observed differentials in school choices, university placements, and thus
labor market outcomes among males and females. Even though it is reasonable to remain
agnostic on the reasons behind the differences in willingness to be unassigned, it is also
possible to provide different possible explanations behind the obtained results. This pa-
per documents for the first time the existence of a gender gap in the willingness to be
unassigned when it comes to choosing universities and it’s effects on placement outcomes.
Additionally, I offer a new perspective on heterogeneity in school choicd’] by measuring

the differences in reservation university programs.

The paper is organized as follows: in Section 2, I provide details about the institutional
setting in Turkey; in Section 3, I describe the data and show some descriptive statistics
to motivate the rest of the paper. In Section 4 and 5, I explain the research design and

report the main results. In Section 6, I conclude.

2 Procedure to Apply to Universities in Turkey

Ensuring equal opportunity in access to education is one of the major challenges of the
Turkish educational system, which is characterized by crucial income, regional, and gen-
der disparities. In the last 30 years, the gender gap has been a persistent characteristic of

Turkish university enrollment and of its labor markets. Female labor force participation

2Cullen et al. 2003, Hastings et al. 2008, Kehinde 2011



(especially at the urban settings) has been lower than in any other OECD country. In
rural areas, for example, girls are more likely to stay home and join family labor while
boys are more likely to go to school. In the past few years, however, this story seems to
have been changing. As in many other countries, girls in Turkey have begun performing
better than boys in terms of general education achievements. For instance, girls now have
higher high school GPAs on average. As for the university applications, the gender gap
is not as severe; in 2008, 44% of high school graduates were girls while 38% of university
applicants were girls. Also, girls outperform boys on average on the university entrance
test in almost every field. Given these recent improvements in the relative performance
of girls, what remains puzzling is that there has been very little reduction in the gender
gap in terms of enrollment rates in highly selective college programs that are linked to

high-wage occupations.

In this section, I briefly explain the university entrance system in Turkey. Some fea-
tures of the application and admission procedure will be important to understand how I
answer the research question of the paper and will also shed some light on the decision-

making of applicants.

The national university entrance test is called as ”Student Selection Exam” (OSS
in Turkish) and the central authority, named Student Selection and Placement Center
(OSYM in Turkish) conducts the test and placement process. The system has a discard-
ing structure with a double-fold objective: Firstly, it denies access to university enrollment
to the least successful students with the presumption that they may drop out or generally
perform poorly in college. Secondly it gives access to university enrollment to the most
successful students and according to their preferences offers them a place in a university
and field of study that is presumed to maximize their utility. The only requirement for
an OSS application is to have graduated and/or be eligible to graduate from high school.
Applications are received by OSYM with a strict deadline all around the country (around
March). All high schools submit the GPA’s of their students to OSYM which are used to
calculate the final test scores of applicants. The test is conducted at a national level on

the same date/time (in June) in all regions of the country.



High school students choose a broad field of study in their second year such as: Sci-
ences, Turkish-Mathematics, Social Sciences, Foreign Languages, or Arts. The university
entrance test has 2 main sections as Quantitative and Qualitative in addition to a foreign

language section (See Figure 1).

Two mains sections each have 2 sub-sections. Regardless a student’s choice of field
in high school, each student answers essentially Quantitative-1 and Qualitative-1 sec-
tions. Quantitative-2 and Qualitative-2 sections are more advanced requiring more de-

tailed knowledge in these fields.

Based on the number of correct and incorrect answers in these sections, 7 different test
scores are calculated for each individual in the following categories: OSS Quantitative-
1 score, OSS Qualitative-1 score, OSS Equally Weighted—lﬂ score, OSS Quantitative-2
score, OSS Qualitative-2 score, OSS Equally Weighted-2 scoreEL and Foreign Language
score. As the coefficients that are multiplied with the number of correct answers in each
section are higher for the sections that pertain to applicant’s high school field and they
are also penalized for incorrect answers, applicants tend to give priority to answer relevant

sections of the test in order to maximize their score.

For those with a test score higher than 160 in OSS Qualitative-1, OSS Equally
Weighted-1, OSS Foreign Language and a test score higher than 185 in OSS Quantitative-
2, OSS Qualitative-2, OSS Equally Weighted-2, OSS placement scores are calculated while
those with test scores below these thresholds are considered as ”failed”. Placement scores
are calculated in each category as a sum of OSS test score with the student’s weighted
high school GPA. Three different weighted GPA’s are calculated for quantitative, qualita-
tive and equally weighted placement scores. Weights control for OSS scores and the GPAs
of all students of a given high school as well as within high school fields. The weighted
GPA is calculated with lower coefficients in an off-field main category. For example, an
applicant having studied Sciences in high school field would have the highest coefficient
for the OSS Quantitative categories (e.g. 0.8) while it is the lowest for OSS Qualitative

3Tt is calculated as a weighted average based on the correct and incorrect answers from Quantitative-1
and Qualitative-1 sections

41t is calculated as a weighted average based on the correct and incorrect answers from Quantitative-2
and Qualitative-2 sections



categories (0.2). Since weighted high school GPA leads to a lower placement score for off-
field categories, it strongly discourages applicants to choose off-field university programs

as the field test score is required to apply.

Each university program is associated with one of the 7 subject categories and it has
a pre-announced limited enrollment capacity which is determined by Higher Education
Council. Applicants receive their final placement scores in all categories together with a
booklet where they can see the capacity and the cutoff score of each university program
from last year’s admissionsﬂ After knowing their final placement score in each category
and each program’s previous years’ cut-off scores of each program, applicants make a list

of programs up to 24 from 7 categories.

The allocation algorithm is based the on college optimal allocation mechanism. All
students who choose a university program are ranked according to their placement scores
in the the department’s associated category with that department and the students with
higher scores are tentatively assigned to that program under the university program’s
capacity constraint. (For example, the computer engineering department is associated
with the category Quantitative-2 and all applicants choosing the engineering department
of university A are ranked according to their Quantitative-2 placement score.) Tentative
assignments continue at each step of the algorithm mechanism until each applicant gets
either one final assignment or no assignment. Since the demand for many programs is
higher than the capacity of the programs, OSYM gives priority to the applicants with
higher test scores. Therefore an applicant will be assigned to the program closest to the
top of her preference list where her test score is sufficiently high compared to the other

applicants who have the same department in their choice list given the capacity constraint.

On average around half of the applicants are placed in a university program. The
applicants who do not have sufficiently high test scores to be assigned in any department
on their list get no assignment and can re-take the exam in the following years. A relevant
feature of the system is the punishment for re-taker applicants who are assigned to a uni-

versity program in the previous year. If an applicant does not enroll in her placement and

5Each university program has a cutoff score which is determined by the placement score of the last
admitted student in last year



retakes the test in the following year, applicant’s weighted high school GPA is calculated
with a lowered coefficient. This rule highly discourages applicants to have a program that
they are not willing to attend on their list. Therefore, applicants are encouraged to get
no assignment this year, remain unenrolled for a year and retake the test next year in
which case their test score in the next year remains "unaltered” instead of attending an
undesired program or rejecting the assignment and retaking the test with lower weighted

high school GPA.

3 Data and Descriptive Statistics
3.1 Dataset

The dataset employed in this study was obtained from a merge of the 2008 OSS (Stu-
dent Selection Examination) dataset and 2008 Survey of the OSS Applicants and Higher
Education Programs dataset. The OSS dataset provides administrative individual infor-
mation on test scores, high school weighted GPA’s, the submitted choice list of university
programs and the placement outcome for the 1,646,376 applicants. On the other hand,
the Survey of OSS applicants is a survey conducted by OSYM where the applicants are
asked questions about the socioeconomic characteristics of their household, high school
achievements, private tutorials, applicant’s views about high school education and pri-
vate tutorials. This is a survey conducted online and 62,775 applicants answered the
survey questions in 2008. I have access to only a random sample of about 16 percent
with 9983 observations. Finally, the Higher Education Programs dataset provides the
information about the characteristics of the universities and higher education programs
(such as whether it is private or public, instruction language, cutoff grades for previous

years, capacities,...etc).

Table 1 provides the summary statistics for applicants by gender. From this table,
it is clear that girls have higher high school GPAs on average, test scores and a lower
rate for retaking the test than boys. As it was previously stated, girls are less likely to
obtain a high school degree and take the university entrance test and this might create a
selection bias. In order to avoid the positive selection in the favor of female applicants,

my analysis will be based on an empirical approach that conditions on the test scores.



In other words, it aims to investigate the differences in university applications controlling

for the standardized test scores obtained by individuals.

As it was previously mentioned, an applicant can put up to 24 choices on their appli-
cation. In the sample of 9983 applicants, 1306 applicants did not submit a choice list at
all. 1217 of these did not submit a list although they had a higher test score than the
minimum of 160 in at least one of the basic categories (Equally Weighted-1, Qualitative-1,
Quantitative-1, Foreign Language). 3238 applicants (one third of sample) submitted a

full list of 24 departments where the average number of choices in the list was 14.28.

Table 1 also gives the summary statistics of characteristics related to the choices made
across gender. 9% of females and 11% of males do not submit a choice list so that they
do not receive an assignment although they passed the threshold test score. Also, females
seem to list a higher number programs from a higher number of subject categories which

implies a more diversified choice list.

One of the possible drivers causing the gender differences in choice and willingness to
be unassigned could be differences in family support by gender in favor of boys. On the
other hand, given the positive selection of females, it is reasonable to argue that girls are
not as discriminated as one would expect. Indeed, it seems females have better finan-
cial support and their parents are relatively better educated with respect to boys. Table
2 shows parents education and some family support indicators by gender and it shows
that the mean differences in parents education levels are positive and significant. Female
applicants do not only have better educated parents but also they are significantly more
likely to attend private tutoring centers. Also, it seems that their parents are more likely
to be willing to pay a private university tuition which is considerably higher than public
universities. These descriptive statistics could arguably support the idea that girls are

not as restricted in terms of family support as one might expect.



3.2 Theory and Evidence on the Willingness to be Unassigned
to Retake the Test

In order to motivate the analysis, I describe a very simple model in a search model context
for the decision to get no assignment instead of choosing a university program that has a
feasible cutoff score given the obtained test score. Let w; € [w,w] denote the test score
that applicant ¢ obtains this year and the utility of attending a university program that is
attainable with w; is given by U(w;) with U’ > 0 and U” < 0. Applicants are risk averse

so that U(w;) is concave and has decreasing absolute risk aversion.

An applicant with the test score w; either accepts to choose a program that is feasible
with w; or to retake the test in the following year. Applicant ¢ is assumed to obtain a test

score w; in the next year which is a random variable given by:

where s; is the shock to the test score that has following mean and variance:

Var(s;) = o2 (3)

Therefore, w; is a random variable with cumulative distribution function F(w;) and con-

ditional mean and variance given by:

Var(w;|o;) = o2, (5)

S?

Given individual characteristics X;, an applicant ¢ with the test score w; compares U (w;|X;)
the utility of attending a program that is feasible with w; and the expected value of re-
taking the test in the next year. Let V* (w;) denote the value of retaking the test, given
test score w; obtained today, and let w!® be the reservation test score of student i, i.e. if
w; < wk the student decides to retake the exam. Given these definitions, we have the

following equations that fully characterize the problem faced by student #:



Vi (w;) = / " P, XU () duis + /; " P, XV (i) — ¢ (6)
Vi (wft) = U'(wf) (7)

where ¢ is the fixed financial cost of preparing for the test.

Facing such a problem, for a given variance in test scores, applicants are expected to
be less willing to be unassigned if the mean test scores obtained by re-takers is lower.
Similarly, for a given mean, a higher variance in test scores of re-takers would lead appli-

cants to be less willing to be unassigned.

In the dataset, there is only information for test scores in 2008. To figure out the
potential changes in the mean and variances of test scores by retaking, I estimate the test
scores on individual characteristics controlling for high school and high-school-field fixed
effects and I calculate the differences in the residuals for first-time takers and second-time
takers for both boys and girls. According to the calculations summarized in Table 3, I
find that there is a significant increase in mean residual test scores for re-takers both for
among boys and girls while there is no significant difference in the increase by gender. As
for the variance of residuals, there is no significant change in the variance of residual test
scores between first taker females and re-taker females while re-taker males seem to have

significantly higher variance with respect to their first-taker pairs.

Considering these results together, with the fact that males tend to retake the test
more than females, it is possible to argue that males tend to retake the test more than
females even though they potentially face a test-score distribution with a higher variance

by retaking with the same increase in mean score with females.
Other interesting descriptive statistics are obtained from the survey questions related

to the applicants’ self-assessments. In the survey, the applicants are asked the following

questions:
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- Would you define yourself as ”a hardworking student”?
- Would you define yourself as feeling pressure during the exams?
- Would you define yourself as being extremely nervous during the exams?

- Would you define yourself as underperforming on the exams because of anxiety?

The differences by gender in the share of applicants answering these questions as ”ab-
solutely agree” are summarized in the end of Table 1. Girls are considerably more likely
to define themselves as ”a hardworking student” while they also seem to be more influ-
enced by the exams by feeling pressure and being nervous which also they believe, affects
their performances. Looking at these descriptive statistics, one might expect that females
could be less willing to be unassigned because they might want to avoid another year of
stressful preparation for the test in a competitive environment. Also, defining themselves
as "a hardworking student”, females might believe they have already put maximum effort
into preparing for the test and another year of preparation would not change their results

as much.

The attitude towards willingness to be unassigned is highly related to the reaction
to competition as it requires preparing for the test another year in a very competitive
environment. In addition to the cost of another year of preparation, the decision to re-
take also represents an example for a decision related to risk taking where an applicant
expects to obtain a higher test score with an uncertainty in the next year. As a result,
any difference in preferences for risk, competition, and waiting an additional year would
also lead to the differences in willingness to be unassigned. According to the evidence
that DellaVigna and Paserman (2005) report, more impatient job seekers set lower reser-
vation wages. Also, Paserman (2007) argues that for US job seekers there is a lot of
heterogeneity - the degree of discounting for low and medium wage workers is very high,
while high wage workers are relatively more patient. Similar to job searching, it is ex-
pected here that the more the applicant avoids being unassigned, the lower the reservation

university program of the applicant since safer choices will necessarily have lower rankings.

Given these descriptive statistics, it is reasonable to expect to find gender differences

in reservation university programs that might explain the remaining gender differences

11



in highly selective university programs in spite of the reversal of the gap in scholastic

achievements.

4 Willingness to be Unassigned

The question that I seek to answer in this section is: Whether boys are more willing to be
unassigned instead of being placed in a program that has a cutoff score which is attainable
with the test score obtained that year. In order to answer this question, one should elicit

the list of university programs applicants submitted.

Since applicants do not know the exact cutoff scores for university programs for the
year that they take the exam, they infer a probability of being assigned to a university
program looking at previous cutoff scores and their own test score. Thus, each student
makes a choice list considering the assignment probabilities with the constraint that the
list can include up to 24 choices from 10,617 programs belonging to one of the 7 cate-
gories provided by 147 universities. The choice list typically includes university programs
having cutoff scores around their placement scores in corresponding categories according
to applicants’ expectations about the cutoff scores that are mostly determined by the

popularity of the programs and universities.

The most crucial part of the analysis in this section is the definition of an individual’s
willingness to be unassigned. To proceed more formally, I describe how the applicants

make their choice list in a simple framework:

There are 7 categories broadly defined in accordance with the sections of the test such
as quantitative, qualitative, foreign languages etc. and every major is associated with
one of these categories. Individual ¢ receives a set of test scores S? that contains a test
score st calculated for each category ¢t where t = {1,2,3,4,5,6,7}. From the 7 categories,

individual ¢ choose program(s) j with expected cutoff score C;.

Given the properties of algorithm mechanism that assigns applicants, it is possible to

identify the last program for which an applicant is to be assigned. As it is mentioned in

12



the previous section, the algorithm mechanism is based on the college optimal algorithm
with multiple categories. All applicants choosing a program j from category t, regardless
of the order of the programs in their list for a given category, are ranked according to their
test score st. Thus, for this category, an applicant would be assigned to the program j
with highest cutoff score in her list that her test score s attains. Similarly, if the test score
st does not attain any of the programs chosen from a given category ¢, then applicant

would get no assignment from this category.

Let program [ with the lowest cutoff score chosen by individual 4 from category ¢. [}
is expected to be the last program in category t for individual 7 to be assigned. In other
words, algorithm mechanism would yield no assignment if the program with the lowest

expected cutoff score in a given category in the choice list would be above the test score.

As it was previously mentioned, the punishment rule for re-takers who were assigned
to a university program in the previous year discourage applicants to choose a program
that they are not willing to attend. Therefore, it is reasonable to assume that the ap-
plicant is willing to get no assignment from a given category, if not assigned to the last
program with the lowest expected cutoff score in that category.

I define an applicant ¢ as willing to be unassigned if the lowest cutoft score programs in
all categories chosen to be higher than applicant’s test scores in corresponding categories

which implies:

ét > Si (8)

forallt=1,2,..7.

The empirical model presented in this section is a reduced form model where I estimate
the gender gap in the probability of being willing to be unassigned based on the definition
above. Thus, I estimate the probability that the expression given by (8) is fulfilled on the
dataset described in the previous section which allows to control for both high school and

high school field fixed effects.

The variable of interest M is an indicator variable taking the value of 1 for male ap-
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plicants, and 0 else. The indicator variable for willingness to be unassigned of applicant

i at school h with the field f is denoted by Rjsf, then the model is given by:

Ring = OM; + 2B + pin + pif + €ing 9)

where i = 1,..N, h = 1,..H, f = 1,...,F, and €y is a random error term and the

empirical hypotheses to be tested is 0 > 0.

Further, I test whether the estimates of § change by different specifications of the
model where I introduce the controls that are supposed to proxy the gender specific im-

pacts on the probability of willingness to be unassigned.

Based on the model above, the probability of willingness to be unassigned is esti-
mated conditional on test scores and individual characteristics controlling for fixed effects
related to high school. Table 4 gives the results from simple OLS, probit and OLS with
high school fixed effects and high school field fixed effectsﬁ where standard errors are
clustered by high school city. According to these results reported in first three column of
Table 4 that are robust to different specifications, the probability of being willing to be
unassigned is higher for boys. As the distribution of test scores can be different for females
and males, the squares and cubes of all test scores are also included in the OLS estima-
tion with high school and high school field fixed effect and results from this estimation
is reported in the last column. The gender difference is around 3% and it’s a significant

number given that the total share of applicants willing to be unassigned is about 30%.

Another feature of the institutional setting is that there is a strong tracking system
discouraging applicants to choose majors that do not pertain their high school field. This
feature is even stronger with an affirmative action for technical high school students where
applicants’ placement scores are calculated adding some extra points in case they choose

the vocational university programs in their own field. Since the applicants from technical

6In a given high school, student might choose different fields in the end of first year and the students
are assigned to the classrooms based on the field choice. Therefore controlling for retaking status, high
schools and high school fields brings the analysis almost to the level of comparing the students in the
same classroom. Given the fact that the procedure for placement in high schools in Turkey is based on
a very similar centralized test based system, controlling for high school related fixed effects allows me to
control for unobserved individual characteristics.
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high schools know that they will receive some extra points in case they choose vocational
programs, they might be choosing programs that have relatively higher cutoff scores which
does not necessarily mean that they are willing to be unassigned. Moreover, the fact that
technical high school are mostly male dominated high schools might confound our results
for gender differences in willingness to be unassigned. In order to avoid this confounding
effect, the same estimation with high school and high school field fixed effects are run

with dummy variables for the technical high schools and an interaction term with gender.

Another confounding effect might be driven by the fact that girls are potentially more
restricted to stay in their hometown and attend a local college instead of attending a uni-
versity in a big city where the best universities are cumulatedm) To control for this effect,
a dummy variable if the high school city is one of the 3 big cities (Istanbul, Ankara and
Izmir) and an interaction term with gender are included in the analysis. Table 5 reports
the results for the estimations where the coefficient of dummy variables for technical high
schools and big cities and interaction terms are insignificant with an ignorable change in

the gender coefficient.

A way of comparing boys and girls in terms of the level of willingness to be unassigned
is to estimate the number of safe choices on gender conditional on test score and individual
characteristics controlling for high school and high school field fixed effects. I define the
number of safe choices as the number of university programs that are listed by applicant
and that have lower cutoff scores than applicant’s test score. It is assumed that the more
is the number of safe choices listed by applicant are, the less the applicant is willing to
be unassigned. The first column of the Table 6 shows that female applicants list a higher

number of safe choices than male applicants.

Another measure of how much an applicant is willing to be unassigned is the nega-
tive differences between lowest cutoff scores programs’ cutoffs scores and applicants’ test
scores for all categories. This is to measure how much higher the cutoff scores of the

lowest cutoff score programs in all categories listed by the applicant are than her test

"Attending a college in a city different from hometown is more costly for students than attending a
college in hometown and families can have less control on their kids if they leave the hometown. Therefore
parents usually prefer that their kids stay in their hometown to attend a local college for not only financial
reasons but also to keep their kids close to them.
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scores in corresponding categories. As the sum of negative differences increase, the prob-
ability of no assignment increases. The second column of the Table 6 reports the results
for the estimation of sum of negative differences between lowest cutoff score programs’
cutoffs scores and applicants’ test scores for all categories on gender conditional on in-
dividual characteristics and high school and high school field fixed effects. Consistently

with the previous findings, this difference is higher for male applicants by 6.80 on average.

Summarizing the evidence that is obtained in this section, it is suggest that female
applicants avoid being unassigned and they make a ”safer” choice list to guarantee an as-
signment. Although it is difficult to disentangle the reasons underlying the aversion from
willingness to be unassigned, these results are strong enough to argue that this aversion
might imply a lower reservation university programs for females with respect to males.
Although several arguments can be suggested as a source the differences in willingness to
be unassigned such as girls avoiding risk and competition, or some cultural norms that
might affect their choices] it is very crucial to interpret the implications of this evidence
of gender differences in willingness to be unassigned on gender differences in school choice
therefore gender differences in outcomes in higher education enrollment, major choice and

eventually labor market outcomes.

5 Gender Differences in Reservation University Pro-
grams

5.1 Differences in Choices within Same Majors

As it was previously noted above, the fact that females are less willing to be unassigned
eventually implies that they also tend to target lower cutoff score university programs.
This difference might be well driven by the differences in preferences for different majors
as female applicants might differ in preferences with respect to males. In order to elim-
inate the gender differences that results from the differences in preferences for majors,
the gender analysis of the cutoff scores of chosen programs is made by controlling for

majors. The results of the estimations of the cutoff score of the last choice and the cutoff

8¢.g. Females have lower reservation university programs because males are more likely to be the
breadwinner of the family
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score of the university program where the applicant get assigned on gender conditional
on test scores together with individual characteristics, high school and high school field
fixed effects, and majors are reported in the first columns of the Table 7 and Table 8
respectively. The results show that female applicants target lower cutoff score programs
within the same major as their last choices with respect to male applicants. They are
also placed in lower cutoff score programs within the same major. The gender difference
is around 3 points for last choice program on average while it is around 2 points for as-

signment program.

Dogan and Yuret (2011) descriptively shows that girls are less mobile than boys when
choosing the location of college and it might potentially restrict the availability of the
alternatives for female applicants. Therefore it might affect their choices as they will not
consider the universities that are out of their home city and/or region as an alternative
in the choice set. In order to control for the potential constraint of distance to good
universities in big cities, I reduced the sample of applicants that attended to a high school

in one of the three big cities: Istanbul, Ankara and Izmir and an interaction term with

genderf]

Second columns of Table 7 and 8 report the results showing that gender difference in
cutoff scores of last choice and assigned university programs are still significant for ap-
plicants attending high schools in 3 big cities and moreover the gender difference is even
higher in these cities which is 3.28 and 3.50 respectively for programs chosen as last choice
and programs where they are placed. This evidence suggests that the gender difference
in cutoff scores of last and placement choices is not driven by the potential differences in

constraints of distance to better schools in big cities.

5.2 Differences in Choosing Majors

Since applicants differ in willingness to be unassigned, the choice lists reflects these dif-
ferences holding test scores constant. The aim of this section is to elaborate the potential

effect of differences in willingness to be unassigned on the major choice and the focus is

9T also exclude the technical high school graduates from this analysis as they might confound the
results because of affirmative action as explained in the previous section
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on the last choice that is assumed to be reservation university program.

It is well reported that there are significant gender differences in major choices where
girls are more likely to choose literature and human sciences whereas boys tend to choose
engineering and natural sciences. In order to disentangle the differences driven by the
differences in willingness to be unassigned, the first choice will be used as a control. The
main challenge in a logistic setup is the huge choice set. Each student makes a choice list
under the constraint that the list can include up to 24 choices from 10,617 programs. In
order to reasonably narrow down the choice set to a feasible set in a logit setup, initially
I created a choice set of majors rather than university programs. The question that this
setup can answer is whether girls tend to choose relatively lower profile majors as their

last choice controlling for the first choice.

The choice set of 18 majors is defined as following: Agricultural Sciences, Communi-
cation Sciences, Dentist and Pharmacy, Economics-Business, Economics-Administration,
Engineering, Architecture, Health School, Literature and Social Sciences, Law School,
Medical School, Open Education, Pre-College Programs, Religion, Natural Sciences, Tourism,
Vocational Schools, Education. Finally "no placement” is also included as an alternative.
As major such as Dentist-Pharmacy, Economics-Business, Engineering, Law School and
Medical School potentially lead to high-paying careers among the alternatives, these ma-
jors are defined as ”High Profile Majors”. These majors can be also considered as majors
that are characterized by a higher probability of dropping out as it requires more effort

to graduate because of the difficulty level of classes.

As a first stage, it is aimed to investigate if there is a gender difference in the proba-
bility of choosing at least one high profile majors in their last three choices. Since I aim
to investigating the effect of differences in willingness to be unassigned on major choice, I
constrained my analysis for those who choose at least one high profile majors in their top
three choices in order to control for the other factors that might affect the preferences for
majors. The estimation results for probability of choosing at least one high profile major
in their last three choices for this sample are reported in Table 9. All specifications such as

simple OLS, high school, high school type, and high school field fixed effects estimations
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are reported in this table and the coefficient of gender is positive, significant and robust
to all specifications suggesting that male applicants who choose high profile majors at
least as one of their top three choices are more likely to choose high profile majors also
in their last three choices. In other words, female applicants, even though they choose at
least one high profile majors in their top three choice, are less likely to choose high profile
majors as their last choices since they might find those majors less secure than low profile

majors to guarantee an assignment.

As a further step, multinomial logistic model is used for the first, last, and placement
choices controlling for gender, test scores and retaking status where the choice set is the
same as described above. 1 calculated predicted probabilities for each alternative and
obtained following graphs where it is possible to see differences in predicted probabilities
for male and female applicants. The Figure 2 presents the graphs showing the predicted
probabilities by gender of choosing Law School, Medical School, Pre-College and Voca-

tional College programs as the first and last option.

As for the vocational school, girls are more likely than boys to choose as their last
option, while they are equally likely to choose as the first option. As for the pre-college,
girls are less likely than boys to choose as the first choice while they are equally likely to
choose as their last option. Pre-college and vocational college programs can be assumed
to be the least advantageous majors in terms of labor market outcomes and these findings
state that girls are willing to choose these majors as their last option more than boys. As
for the law school, girls are equally likely with boys to choose as first option, while they
are less likely to choose as the last option. As for the medical school, girls are less likely
to choose as the last option, while more likely to choose as the first option. Since the high
profile majors such as law school and medical school have higher cutoff scores, choosing
these majors as last option would yield an assignment with a relatively lower probability
with respect to low profile majors. Combining these results with those reported in the
previous section, females tend to choose lower profile majors and lower ranked programs

within the same major as their last choices controlling for the first choices.
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5.3 Ranking University Programs

In this section, I use a rank-ordered conditional logit model to estimate how applicants
value university program characteristics and how the weights placed on these character-
istics vary across gender. Rank-ordered logistic model is also known as exploded logit
model. Exploded refers to a logit model that incorporates multiple-ranked choices for
each person but not only the first choice that gives the highest utility. (McFadden and
Train 2000, Train 2003)

The setting of rank-ordered conditional logit model is very similar to a conditional
logit model where a coefficient is obtained for each attribute of the alternatives. In this
rank-ordered model, each applicant is assumed to have an individual choice set and the
individual choice set is assumed to include the university programs that are chosen by
the applicant and coefficients are mapped from the ranking of these alternatives. Using
this method, I obtain the coefficients for university program attributes such as tuition
status, distance from high school city, instruction language, whether university is a public

or private university, whether university is in a big city etc.

The advantage of using this method is double-fold compared to a conditional logit
model: First of all, large choice set in our setting that consists of more than 10 thousands
university programs is not feasible for a logistic regression. Second, since conditional logit
model allows to analyze only one choice from a choice set, one would loose an important
part of the information about preferences as most of the applicants make more than one
choice. On the other hand, rank-ordered logistic regression use all the information about

the programs that are chosen by applicants mapping the coefficients from their ranking.

I estimated the rank-ordered conditional logit model separately for the sample of girls
and boys. Although the effect of gender is not identified, it is still possible to draw some
general conclusions from the results reported in Table 10. As the model is estimated sep-
arately for females and males, comparing the magnitudes of the coefficients of university
program attributes for girls and boys does not provide any significant information about
how differently they value the attributes of university programs. Yet, results can still

provide evidence for gender differences if one compares the signs and significance levels
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of the coefficients. Coefficients of some attributes (such as whether the university is in a
big city, distance from home city to university city, capacity of the program, whether it is
a night school B, scholarship status) are significantly different from zero having the same

sign for both female and male samples.

On the other hand, some coefficients are different in terms of the statistical significance
between girls and boys. First of all, the coefficient of the difference between cutoff score
of program and applicant’s test score which measures how likely that applicant could be
assigned to that program is significantly different from zero for female applicants while
male applicants are not as much concerned about the likelihood of assignment when they
make their choice list. Likewise, distance from home to college is an attribute that fe-
males value significantly while males seem not to place a significant weight on it. Another
difference in significance levels is observed on the coefficient of foreign language attribute.
While the coefficient is positive and significant for male applicants, it seems that female

applicants do not necessarily prefer university programs where the instruction is in a for-

eign language. E

Finally, coefficients of indicator variables for majors differ in terms of significance be-
tween females and males. As it is described above there are 18 main majors where some
of them are defined as high profile since they lead to high-paying careers. In this model,
education major is taken as the base major since it can be related to both in quanti-
tative and qualitative categories therefore it is relatively more comparable to all majors
as an alternative. The coefficients for Agricultural Sciences, Communication Sciences,
Dentist and Pharmacy, Architecture, Law School, Literature and Social Sciences, Open
Education, Natural Sciences, and Tourism majors are significant and has the same sign
for both boys and girls. The coefficients of following majors are insignificant for girls
and positive and significant for boys: Economics-Business, Economics-Administration,
Engineering, Health School, Medical School, Pre-College Programs, Vocational Schools.

Boys place more weight on choice of majors that are higher profile than education such

1ONight schools usually has the same instruction programs as normal programs but only difference
is the classes are scheduled in the evening and the tuition is relatively more expensive than the normal
programs.

HUsually English language

21



as Economics, Engineering, Medical Schoolm.

One might think that these differences in coefficients for the majors might be driven by
the differences in high school ﬁelds.ﬁ Therefore one can argue that differences in compar-
ative advantages in different fields across gender might yield differences in major choices.
However rank-order logistic setup takes the chosen alternatives as the choice set and maps
coefficients from the ranking. Therefore, this feature of the model is essential to avoid
potential confounding factors that might affect major choice. Yet, even if these differences
were assumed to be driven by differences in high school fields, females still do not prefer
high profile majors in equally weighted categories (such as Economics, Business) to educa-
tion. The reason that females find education major more appealing is that it is considered
as the most convenient job for a female in the society even though it usually leads to a
very modest wage and career. These results are also in line with the findings reported in

the previous sections that suggest that females have lower reservation university program.

6 Conclusion

Despite the reversing gender gap in educational outcomes where currently females per-
form better on average in many countries, highly selective colleges consequently high-wage
occupations and industries remained dominated by males. In Turkey, similarly, although
females outperform males in scholastic success at high school and on the university en-
trance test on average, university placement outcomes do not seem to reflect these im-
provements in gender gap. The gender gap is still apparent and large when we look at the
general statistics on the number of quality university degrees hold by men and women.
In order to understand the forces driving these gaps, one should analyze potential gender
differences that might affect school choice. The particular institutional setting in Turkey
allows me to abstract from the two-sided problem which usually complicates the question

of preferences vs. discrimination since I perfectly observe individual’s choices and test

12Males also tend to prefer pre-college programs or vocational schools rather than education major.
This result is expected given that males tend to apply low profile majors such as two-years pre-college
programs or open education programs to keep their student status in order to be able to delay the
compulsory military service

13Girls are more likely to choose qualitative or equally weighted fields while boys tend to choose
quantitative fields at high school
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scores and the placement is based on a computer-calculated algorithm that allocates ap-

plicants only according to their choices and test scores.

Using a unique administrative dataset from a centralized system that allows to control
for test scores and to determine the reservation university program, I created a measure
for willingness to be unassigned and I find that females are less willing to be unassigned. I
incorporate the willingness to be unassigned to the analysis of choices so that I distinguish
between preferences and to a certain extent willingness to wait an additional year. By
this approach, I find that females tend to target lower cutoff score programs within the
same major as their last choice that guarantee an assignment with a higher probability
when controlling for their first choices. With respect to males, females are also more likely

to choose lower profile majors as their last choice when controlling for the first choice.

Finally, I provide evidence that females tend to be more concerned about university
program characteristics such as admission probability and distance from home to uni-
versity city rather than other characteristics such as foreign language as the instruction
language which could be an asset when they look for a job after graduation. Also, they do
not give a significant weight to the choice of major to be a high profile major. The char-
acteristics found to be valued by girls in their choices can be classified as characteristics
that matter during the university education while other characteristics such as instruc-
tion language and major are important after university as they will provide important

advantages in the labor market.

In this paper, I document the existence of a gender gap in the willingness to be unas-
signed and wait an additional year for a better college enrollment. I present also evidence
on differences in reservation university programs that are defined through the willingness
to be unassigned. Reported evidence on differences in reservation university programs do
not only provide an explanation for the persistent gender gap in highly selective college
enrollments and high-wage occupations and industries but also it offers a new perspective

on heterogeneity in school choice.
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Figure 1: University Entrance Test: Sections and Categories
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Table 1: Descriptive Statistics by Gender

Female Male Diff
Achievements
High school GPA 76.53 72.03 4.50

(11.21) (11.58) (0.0000)***
Test Score Equally Weighted-1 212.55 206.03 6.53

(35.90) (42.80) (0.0000)***
Test Score Equally Weighted 2 153.68 145.22 8.46

(83.63) (86.58) (0.0000)***
Test Score Quantitative 1 188.20 188.75 -0.55

(38.71) (45.26) (0.0008) s
Test Score Quantitative 2 111.46 106.15 5.31

(98.32) (100.30) (0.0000)***
Test Score Qualitative 1 219.11 209.58 9.53

(34.24) (42.05) (0.0000)***
Test Score Qualitative 2 111.57 96.25 15.32

(101.90)  (101.46)  (0.0000)***
If assigned 0.63 0.62 0.01

(0.48) (0.49) (0.0000) 33
Retaking
Birth year 1988.23  1987.68 0.55

(2.55) (2.99) (0.0000)***
If retake 0.78 0.84 -0.06

(0.41) (0.37) (0.0000)***
Number of trials 3.02 3.44 -0.42

(2.33) (2.77) (0.0000)***
If previously assigned 0.24 0.32 -0.08

(0.43) (0.47) (0.0000)***
Choices
Satisfy threshold but no choice 0.09 0.11 -0.02

(0.29) (0.31) (0.0000)***
If choices from only one category 0.44 0.47 -0.03

(0.50) (0.50) (0.0000)***
Number of categories 1.58 1.41 0.16

(1.01) (1.00) (0.0000)***
24 prefs submitted 0.30 0.34 -0.04

(0.46) (0.47) (0.0000)***
Number of Choices 14.46 14.18 0.28

(8.90) (9.44) (0.0000) %3
Survey Answers about Themselves
If define as hardworking 0.43 0.34 0.09

(0.50) (0.47) (0.0000)***
If define as under pressure at exams 0.42 0.39 0.03

(0.49) (0.49) (0.0000)***
If define as nervous at exams 0.45 0.41 0.04

(0.50) (0.49) (0.0000)***
If define as underperforming at exams  0.41 0.40 0.01

(0.49) (0.49) (0.0000)***
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Table 2: Parents Education and Family Support by Gender

Female Male

Diff

Parents Education and Support

if working 0.19
(0.40)
Private Tutoring 0.73
(0.45)
Ratio of Number of Choices in Private Universities  0.33
(0.41)
Ratio of Number of Choices in Other Cities 2.43
(4.19)
Ratio of Number of Choices in Big Cities 0.54
(0.36)
Mother education not reported 0.004
(0.07)
Mother No Schoolling 0.11
(0.32)
Mother Primary School 0.47
(0.50)
Mother Middle School 0.12
(0.32)
Mother High School 0.20
(0.40)
Mother College or beyond 0.10
(0.30)
Father education not reported 0.02
(0.14)
Father No School 0.03
(0.18)
Father Primary School 0.29
(0.45)
Father Middle School 0.16
(0.37)
Father High School 0.28
(0.45)
Father College or beyond 0.22
(0.42)

0.34
(0.47)

0.66
(0.47)

0.32
(0.41)

2.41
(4.41)

0.48
(0.36)

0.008
(0.09)

0.23
(0.42)

0.43
(0.50)

0.11
(0.31)

0.15
(0.36)

0.07
(0.25)

0.03
(0.16)

0.07
(0.26)
0.32
(0.47)

0.14
(0.35)

0.25
(0.43)

0.19
(0.40)

-0.15
(0.0000)***

0.07
(0.0000)***

0.01
(0.0000)***

0.02
(0.0715)*

0.06
(0.0000)***

0.004
(0.0000)***

-0.12
(0.0000)***

0.04
(0.0000)***

0.01
(0.0000)***

0.05
(0.0000)***

0.03
(0.0000)***

-0.01
(0.0000)***

-0.04
(0.0000)***

-0.04
(0.0000)***

0.02
(0.0000)***

0.03
(0.0000)***

0.03
(0.0000)***

Table 3: Differences in Mean and Variance of Residual Test Scores by Gender and
Retaking

FT Girls RT Girls DIff FT Boys RT Boys Diff Diff-in-Diff
Mean

-0.723 1871 2.504% 1542 0.141 1.682% 0.912

(1.183) (1.028) (1.567) (1.019) (0.781) (1.284) (2.026)
Variance
S D. 28.367 29.580 30.3803 34.813
p-value 0.117 0.000
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Table 4: Taking Risk of Getting No Assignment

OLS Probit FEs1 FEs2
Male .0455 .1298 .0356 .0338
(.0103)*** (.0293)*** (.0152)** (.0153)**
Years Since Graduation=1 -.1152 -.3152 -.1325 -.1220
(.0184)*** (.0496)*** (.0225)*** (.0222)***
Years Since Graduation=2 to 4 -.0375 -.0986 -.0688 -.1001
(.0199)* (.0540)* (.0220)*** (.0219)***
Years Since Graduation=>5 or more .0276 .0831 -.0486 -.0773
(.0244) (.0663) (.0294)* (.0293)***
Private Tutoring .0237 .0677 .0165 .0144
(.0101)** (.0293)** (.0171) (.0169)
If working -.0261 -.0755 -.0247 -.0292
(.0123)** (.0354)** (.0166) (.0164)*
All High School GPAs Yes Yes Yes Yes
All Test Scores Yes Yes Yes Yes
All Test Scores Powers No No No Yes
Household Controls Yes Yes Yes Yes
High School FEs No No Yes Yes
High School Field FEs No No Yes Yes
Obs. 8496 8496 8496 8496
F statistic 67.1634 1.2569 1.3394
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Table 5: Taking Risk of Getting No Assignment: Different Specifications

1) (2) (3) 4)
Male .0356 .0448 .0355 .0347
(.0152)** (.0195)** (.0152)** (.0160)**
If HS in one of 3 big cities -1.4140 -1.3897
(1.0664) (1.0669)
If HS in one of 3 big cities by gender -.0222
(.0294)
If Technical HS 2751 2671
(.6549) (.6569)
If Technical HS by gender .0076
(.0478)
Years Since Graduation=1 -.1325 -.1329 -.1325 -.1325
(.0225)*** (.0225)*** (.0225)*** (.0225)***
Years Since Graduation=2 to 4 -.0688 -.0691 -.0687 -.0687
(.0220)*** (.0220)*** (.0220)*** (.0220)***
Years Since Graduation=>5 or more -.0486 -.0492 -.0485 -.0484
(.0294)* (.0294)* (.0294)* (.0294)*
Private Tutoring .0165 .0166 .0167 .0167
(.0171) (.0171) (.0171) (.0171)
If working -.0247 -.0247 -.0247 -.0246
(.0166) (.0166) (.0166) (.0166)
All High School GPAs Yes Yes Yes Yes
All Test Scores Yes Yes Yes Yes
Household Controls Yes Yes Yes Yes
High School FEs Yes Yes Yes Yes
High School Field FEs Yes Yes Yes Yes
Obs. 8496 8496 8496 8496
F statistic 1.2569 1.2566 1.2564 1.2558

Table 6: Taking Risk of Getting No Assignment: Other Measures
Number of Safe Choices

Differences between TS and CS

Male

Years Since Graduation=1

Years Since Graduation=2 to 4

Years Since Graduation=>5 or more

Private Tutoring

If working

All High School GPAs
All Test Scores
Household Controls
High School FEs

HS Field FEs

Obs.
F statistic

-.5297
(.1677)***

.4009
(.2476)

1798
(.2420)

-.8850
(.3236)***

-.1973
(.1885)

-.0142
(.1822)
Yes
Yes
Yes
Yes

Yes

8496
1.2612

6.1764
(1.4407)***

-5.0414
(2.1268)**

-9.7177
(2.0793)***

-18.4346
(2.7800)***

1.1047
(1.6192)

-6.8747
(1.5653)***
Yes
Yes
Yes
Yes

Yes

8496
1.1806
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Table 7: Cutoff Score of Last Choice
Only 3 Big Cities

Last Choice

No Tech High School

Male
If Retaker
Private Tutoring

If working

All High School-GPAs

All Test Scores

Cutoff Score of First Choice

Categories
High School Fields

Obs.
F' statistic

3.0946
(1.2042)**

-7.3685
(1.5639)***

1.1371
(1.3870)

-3.2911
(1.3847)**
Yes

Yes

Yes

Yes

6380
233.2906

5.2397
(1.9539)***

-8.2222
(2.4057)***

1.0288
(2.2564)

-2.6655
(2.3096)
Yes

Yes

Yes

Yes

2209
95.9372

2.9530
(1.2005)**

-7.3583
(1.5589)***

.8654
(1.3832)

-3.1202
(1.3804)**

Yes
Yes
.0592
(.0091)***
Yes
Yes

6380
231.1719

Placement Outcome

Table 8: Cutoff Score of Placement Outcome
Only 3 Big Cities

No Tech High School

Male
If Retaker
Private Tutoring

If working

All High School GPAs

All Test Scores

Cutoff Score of First Choice

Categories
High School Fields

Obs.
F statistic

2.0033
(.9413)**

1.1727
(1.1510)

9752
(1.0362)

-2.0106
(1.0393)*
Yes

Yes

Yes

Yes

5959
187.0551

3.5058
(1.5515)**

-1.7143
(1.8468)

14148
(1.7271)

-1.0925
(1.7785)
Yes

Yes

Yes

Yes

2176
90.2989

2.1921
(.7407)***

-5.4800
(.9510)***

-1.5520
(.8806)*

-4.4417
(.8693)***

Yes
Yes
.0562
(.0061)***
Yes
Yes

4530
617.8444




Table 9: Differences in Major Choice As First 3 and Last 3 Choices by Gender

1) (2) (3)
Male .1552 1527 1671
(.0292)*** (.0190) *** (.0170)***
Private Tutoring .0393 .0079 .0081
(.0437) (.0275) (.0330)
Years Since Graduation=1 -.0409 -.0851 -.1203
(.0392) (.0246)*** (.0238)***
Years Since Graduation=2 to 4 -.0665 -.0908 -.1185
(.0418) (.0264)*** (.0221)***
Years Since Graduation=>5 or more -.1239 -.1309 -.1156
(.0715)* (.0452)*** (.0448)***
If Working -.0005 -.0422 -.0456
(.0365) (.0244)* (.0192)**
All Test Scores Yes Yes Yes
All High School GPAs Yes Yes Yes
Household Controls Yes Yes Yes
High School FEs Yes No No
High School Field FEs Yes Yes No
High School Type FEs No Yes No
e(N) 2994 2994 2994
e(F) 1.3895 11.3691 115.5524
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Table 10:

Rank Ordered Logit Estimation

Girls Boys ALL
Test Score-Cutoff Score -.0008 -4.00e-06 -.0002
(.0002)*** (.0001) (.0001)*
If University is in Big City 3711 .4943 .4543
(.0185)*** (.0130)*** (.0106)***
Distance from High School City -.00005 1.00e-05 -5.00e-06
(.00003)* (.00002) (1.00e-05)
Capacity .0012 .0006 .0008
(.0002)*** (.0001)*** (.00009)***
Foreign Instruction Language -.0658 .1692 .1031
(.0542) (.0336)*** (.0285)***
Night School -.1973 -.2353 -.2222
(.0193)*** (.0133)*** (.0110)***
Private University with No Scholarship -25.0750 -25.7682 -25.2286
(.1774)*** (.1367)*** (.1083)***
Private University with Scholarship -25.4407 -26.2224 -25.6551
(.2062)*** (-1597)*** (.1263)***
Majors
Agriculture-Environment .0234 .0306 .0176
(.0683) (.0482) (.0393)
Communication -.4392 -.5321 -.5399
(.3603) (.2228)** (.1896)***
Dentist-Pharmacy .8427 1.0203 .9514
(.0821)*** (.0697)*** (.0528)***
Econ-Business .0088 .2224 1227
(.0453) (.0400)*** (.0299)***
Econ-Administrative .0851 .1855 .1455
(.0924) (.0675)*** (.0543)***
Engineering .0700 1762 1283
(.0517) (.0360)*** (.0293)***
Architecture 1.1569 1.3095 1.2687
(.1858)*** (.2183)*** (.1410)***
Health School -.1002 .1010 .0145
(.0574)* (.0504)** (.0376)
Law School -.2578 .0399 -.0759
(.0842)*** (.0714) (.0542)
Literature .2926 .5220 .4059
(.0569)*** (.0562)*** (.0398)***
Medical School 1151 4441 .3248
(.0919) (.0642)*** (.0526)***
Open Education -.2612 .5301 14661
(.3483) (.3698) (.2257)**
Pre-College -.1115 -.2071 -.1935
(.2776) (.1239)* (.1126)*
Natural Sciences .2593 .4388 .3610
(.0508)*** (.0408)*** (.0317)***
Tourism 1857 .2003 .1705
(.1003)* (.0650)*** (.0542)***
Vocational -.0327 -.0522 -.0630
(.0527) (.0378) (.0305)**
e(N) 30181 57276 87457
e(F)
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