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Abstract

This paper examines a model in which individuals contract with one another along
the branches of a fixed network and then select verifiable productive actions with ex-
ternally enforced transfers. Special cases of the model include most settings of con-
tracting with externalities that have been studied in the literature. The model allows for
a type of externality that the previous literature has not explored fully—where a party
is unable to contract directly with others whose actions affect his payoffs. The pa-
per investigates the prospects for efficient outcomes under various contract-formation
protocols (“contracting institutions”) and network structures. There are contracting
institutions that always yield efficient equilibria for any connected network. A critical
property is that the institutions allow for sequential contract formation or cancellation.
The equilibrium construction features assurance contracts and cancellation penalties.
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1 Introduction
In many contractual settings, there is multilateral productive interaction but barriers prevent
the parties from contracting as a large group. Instead, parties form contracts in a decentral-
ized way, whereby pairs of agents establish contracts independently of one another. As an
example, consider a subcontracting arrangement that is common in construction projects.
A developer may contract with a general building contractor, who separately establishes
agreements with subcontractors for the provision of some of the constituent components.
This example features an externality: The developer cares about the subcontractors’ work
(it influences her benefit of the completed project) but she doesn’t contract directly with
the subcontractors. I call this an externality due to lack of direct links; such an externality
is formally defined as a situation in which at least one agent is unable to contract directly
with another whose productive action he cares about.

The question investigated here is whether a lack-of-direct-links externality can be in-
ternalized via a chain of bilateral contracts and, if so, under what conditions. For instance,
in the example just described, the developer and general building contractor may form a
deal specifying that the developer must pay the building contractor conditional on the sub-
contractors’ satisfactory performance. Furthermore, the general building contractor may
have an agreement with each subcontractor that rewards the subcontractor contingent on
satisfactory performance. In this example, the contractual chains run from the developer,
through the general building contractor, to each subcontractor. I seek to understand whether
contractual chains like these would be effective in achieving efficient outcomes and whether
they would arise in an equilibrium of the decentralized contracting process.

Many important real settings feature lack-of-direct-links externalities. Examples in-
clude the internal organization of firms (where multiple workers have employment con-
tracts with the firm but also care about each others’ actions), sales of goods exhibiting
network externalities, private provision of public goods, commons problems, risk-sharing
arrangements, and the like. Although these types of externalities are common, they have
not been methodically studied and are not well understood.

I develop a general model that covers the various applications listed above. In the
model, a set of n players interacts in an “underlying game” 〈A, u〉 with externally enforced
monetary transfers and full verifiability. Payoffs are linear in money. Before the underlying
game is played, the players can establish contracts. Only bilateral contracts are feasible
and, furthermore, there are limits on which pairs of players can communicate and establish
contracts. These limitations are formally represented by an undirected network of bilateral
links, L ⊂ N × N , where N = {1, 2, . . . , n}. Only linked pairs of players (i, j) ∈ L
can communicate and contract. A contract between players i and j specifies transfers
between them as a function of the outcome of the underlying game. That is, it is a function
m :A → Rn

0 such that mk(a) = 0 for all k /∈ {i, j} and every a ∈ A, where Rn
0 denotes

the vectors in Rn whose components sum to zero (balanced transfers). I shall measure
efficiency by the players’ joint values (sum of payoffs). Since this is meaningful only if it
is feasible to transfer money across the network, I assume that L is connected.
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A novel aspect of the approach taken in this paper is that it emphasizes the role of the
contracting institution that facilitates contract formation. Formally, a contracting institution
is an extensive game form with payoff-irrelevant messages. The outcomes of this game
form are the externally enforced contracts. Critically, contracting institutions are restricted
by the network of links and by the following assumptions that represent the notion of
voluntary, decentralized contracting:

• [Private] Each player receives messages from only those to whom he or she is linked
in the network, and she does not observe messages exchanged between other players.

• [Independent] The contract formed between players i and j does not depend on the
messages sent by, or received by, any other player k.

• [Voluntary] Players have the option of rejecting contracts.

I call a contracting institution natural if it satisfies the these assumptions.
The natural contracting assumptions represent the physical constraints and the limita-

tions of the external enforcement system that necessitate decentralized contracting rather
than centralized planning. The third assumption ensures that the definition of “contract”
is conventional, in that it requires the consent of both parties. This is a standard require-
ment for external enforcement in modern legal systems. The first assumption imposes the
network limitation—that communication and contract formation take place only between
linked players—and thus it describes real physical constraints on how the players can in-
teract. The second assumption embodies the principle that any two contracting parties are
free to form whatever contract they desire, uninhibited by others in the society. Further, it
rules out “contracts on contracts,” whereby players in one relationship make their contrac-
tual specifications a function of the contracts formed by other relationships (not just the
productive action profile).1

In this paper, I focus on a narrow “possibility” question: Given that contracting must
take place in a decentralized manner, is there a natural contracting institution under which
efficient outcomes can be achieved across a wide range of underlying games and networks?
If so, what are the minimal requirements of the network and what are the key properties
of the contracting institution? In technical terms, the first question asks whether there is

1Further discussion on the scope of contracting may be found in Sections 3, 4, and 5. One can also
motivate the second assumption on the basis of limitations of the enforcement system. Consider a legal
system in which courts resolve disputes by hearing evidence and then issuing judgments that compel transfers
between the parties. In reality, contracting partners rarely go to court. Instead, they voluntarily make the
transfers that their contracts require, with the understanding that failure to comply would trigger a lawsuit,
at which point the court would compel the required transfers. When a pair of contracting partners appears in
court, the judge can observe their contract and the verifiable outcome of the underlying game (for evidence of
these can be provided by the contracting parties). However, the judge will not readily observe the contracts
written in other contractual relationships, or at least it may be prohibitively costly for the parties to gather and
provide such evidence to the court. Thus, it is feasible to enforce transfers as a function of only the outcome
of the underlying game and not the messages sent in other contractual relationships.
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a contracting institution that implements efficient outcomes, meaning that for every under-
lying game and every allowed network structure, there is a perfect Bayesian equilibrium
in which an efficient action profile is played in the underlying game. The second question
asks, among other things, what kind of network structures can be allowed.

To generate intuition and calibrate expectations, consider some simple logic and two
examples. Note first that, because every player i is a member of at least one bilateral
contractual relationship, there exists a contract that would force player i to select his part
of an efficient action profile; the contract could specify a large punishment if player i fails
to choose the prescribed action. But such a contract may not arise in equilibrium.

Example 1: Suppose n = 3. Player 1’s action space in the underlying game is
A1 = {b, c}, whereas players 2 and 3 have no actions. As a function of player 1’s ac-
tion, payoffs are given by u(b) = (0, 0, 4) and u(c) = (1, 0, 0). The network is L =
{(1, 2), (2, 1), (2, 3), (3, 2)}, so players 1 and 2 are linked and players 2 and 3 are linked.

1 2 3

In the figure above, which depicts the network, I indicate with a filled circle that player 1
has an action in the underlying game. In this example, the efficient outcome cannot be ob-
tained with a natural contracting institution that has one-shot, simultaneous contracting. To
see this, consider the contracting institution in which linked players form contracts simul-
taneously via the “Nash demand game.” That is, players 1 and 2 send contract demands to
each other, and simultaneously players 2 and 3 do the same. If a pair of linked players name
the same contract, then this contract goes into force; otherwise, they get the null contract,
which specifies zero transfers always. Note that player 2 declares two contract demands,
one for player 1 and one for player 3. Also note that, when the players select actions in
the underlying game, they have private information (in particular, about the contracts they
formed earlier).

In order for player 1 to select action b in equilibrium, it must be that players 1 and 2
form a contract that pays player 1 at least 1 for choosing this action in the production
phase. Because player 2 can guarantee himself a payoff of 0 by naming the null contract,
the proposed equilibrium must also have players 2 and 3 form a contract that transfers at
least 1 from player 3 to player 2 in the event that player 1 chooses b. Then player 2 is
compensated by player 3 for the amount player 2 must transfer to player 1 conditional
on b being chosen. Thus, in the proposed equilibrium, players 1 and 2 name the same
contract m while players 2 and 3 name the same contract m′, where m(b) = (τ,−τ, 0) and
m′(b) = (0, τ ′,−τ ′), for some values τ and τ ′ satisfying 1 ≤ τ ≤ τ ′ ≤ 4. Also, it must be
the case that τ ≥ 1 +m1(c), so that b is supported in the production phase.

Unfortunately, this specification of behavior in the contracting phase is not consistent
with individual incentives. If Player 3 deviates by naming the null contract in his relation-
ship with player 2, then he will get a payoff of 4 rather than the payoff of 4 − τ ′ that he
would have received under the specified behavior. He gets 4 because his deviation does
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not disrupt the formation of contract m between players 1 and 2. At the productive phase,
player 1 would not know that any deviation occurred, and he would select b.

The problem arises for any contracting institution in which player 3 has the last word
on the formation of a contract with player 2. For instance, suppose that the contracting
institution specifies the following order of moves: Player 2 offers a contract to player 1,
who either accepts or rejects it; then player 2 offers a contract to player 3, who accepts or
rejects. Again, there is no equilibrium in which player 1 chooses action b, for this would
require the kind of contracts described above; but then player 3 could gain by deviating
with an offer of the null contract. On the other hand, if the order of contracting is reversed,
so that players 2 and 3 first negotiate, followed by players 1 and 2, then there is an efficient
equilibrium. In this equilibrium, player 2 will not make a deal with player 1 unless he was
previously successful in contracting with player 3. But although this contracting institu-
tion functions well for the externality of Example 1, where player 1’s action of b benefits
player 3, it would not deliver an efficient outcome if the externality ran the other way.

The next example shows that the problem is worse in cases of complex externalities.
Example 2: Suppose n = 3 and Ai = {b, c} for i = 1, 2, 3. Payoffs in the underlying

game are given by: u(b, b, b) = (1, 1, 1), u(c, c, c) = (0, 0, 0), and if at least one player
selects c and another player selects b then those selecting c get 4 and those selecting b get
−12. The network is as before: L = {(1, 2), (2, 1), (2, 3), (3, 2)}.

1 2 3

First note that, if the contracting institution specifies a particular order in which players
can communicate and establish contracts, then it cannot achieve the efficient action profile
(b, b, b). This is because the player who is last to contract can decline to do so and choose
action c. Any player who is not linked with this last player will not know of the deviation
and will still select b in the productive phase, so the deviator would get a payoff of 4 and
thus strictly prefer to deviate.

Second, observe that contracting is problematic even for institutions that give relation-
ships flexibility over the time at which they establish contracts. Consider, for instance, an
institution that allows for contracting in a finite number of discrete rounds. Suppose that in
each round a linked pair of players interacts as in the Nash demand game over contracts. If
the players name the same contract, then it goes into force and the contracting session ends
for these two players. Such an institution would allow all of the players to coordinate on
forming contracts in sequence (with, say, players 1 and 2 establishing their contract first,
followed by players 2 and 3) or at the same time. But suppose that, in equilibrium, players i
and j are supposed to form their contract at the end of the sequence. If player j deviates by
naming the null contract, then he is poised to get the cheater’s payoff of 4 if player k (the
third player) will still choose b in the productive phase. One can show that there is no PBE
that leads to the efficient action profile with high probability.
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Despite the conclusion of these examples, my message is positive. This paper’s single
theorem establishes the existence of a natural contracting institution that virtually imple-
ments efficient outcomes. In other words, for every underlying game, every connected
network of contractual relationships, and every ε > 0, there is a PBE that achieves an ef-
ficient outcome with probability of at least 1 − ε. Thus, there is a contracting institution
under which, in all productive settings, lack-of-direct-links externalities can be overcome
by decentralized contractual chains. Furthermore, a critical property of a well-functioning
contracting institution is that it allows for sequential communication and contracting.

The next section provides more details of the general model. Section 3 gives some
applications and discusses the related literature. Section 4 contains the theorem and its
proof. In Section 5, I offer additional comments on the related literature and I discuss
further steps in the research program. [Note: There is a missing section on tangential results
and discussion. The next version will also have a better layout of the main analysis.]

2 The Setting
There are n players who will interact in an underlying game 〈A, u〉, where A = A1×A2×
· · · × An is the space of action profiles and u :A → Rn is the payoff function. Payoffs are
in monetary units. Let N = {1, 2, . . . , n} denote the set of players. I assume that n is finite
and that A is a subset of some finite set A, which is interpreted as the set of all possible
action profiles that the external enforcer can recognize. For any subset of players J ⊂ N ,
write aJ ≡ (ai)i∈J as the vector of actions for these players. The players commonly know
the action space and payoff function.

An external enforcer compels monetary transfers between the players, and he does so
as directed by contracts that the players form. The enforcer does not observe the payoff
function u or the feasible space of action profiles A. Otherwise, the contracting environ-
ment has full verifiability in that the enforcer observes the action profile a ∈ A that the
players select. Thus, transfers can be freely conditioned on the outcome of the underlying
game. However, contracts can be formed only in a restricted set of bilateral relationships.
This set of contractual relationships is given by a fixed network L ⊂ N × N , with the
interpretation that players i and j can form a contract if and only if (i, j) ∈ L. Contracting
by larger groups of agents is not possible. I sometimes call a pair (i, j) ∈ L contracting
partners.

Network L is undirected and thus symmetric, so (i, j) ∈ L implies that (j, i) ∈ L. The
network is generally not transitive; thus, player i may be able to contract with player j, and
player j may be able to contract with player k, whereas player i is unable to contract with
player k. Assume that L is connected.

Contracting partners can condition transfers between them on actions taken by third
parties. For example, a contract between players 1 and 2 could specify that player 1 must
pay an amount to player 2 in the event that player 3 selects a particular action in the under-
lying game. However, assume that a contract may not impose a transfer on any third party.
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For instance, the enforcer will not enforce a contract between players 1 and 2 that speci-
fies a transfer to or from player 3.2 Thus, a contract between players i and j is a function
m :A → Rn

0 , where mk(a) = 0 for all k /∈ {i, j} and every a ∈ A. Denote by m the null
contract that always specifies a transfer of zero.

LetM denote a set of contracts formed by the various contractual relationships. Given
such a set, let

M(a) ≡
∑
m∈M

m(a).

Because of transferable utility and a connected network, an efficient action profile a∗ must
solve maxa∈A

∑
i∈N ui(a); that is, it maximizes the players’ joint value (the sum of the

players’ payoffs in the underlying game). I say that a set of contractsM supports a∗ if a∗

is a Nash equilibrium of the game 〈A, u+M〉.

Contracting Institution Formalities
A contracting institution is an extensive game form with payoff-irrelevant messages that
map to contracts enforced by the external enforcer. I constrain attention to a particular
class of game forms in which the players send messages in discrete rounds 1, 2, . . . , R.
There is no discounting. In every round, each player i sends a vector of messages, one
message for every other player. Let Λr

ij denote the set of feasible message from player i to
player j in round r, and let λrij ∈ Λr

ij denote the message that player i sends. The message
space is arbitrary and can include descriptions of contracts. Assume that there is a “null
message” λ that is an element of Λr

ij , for all i, j, r.
Let zrij denote the sequence of messages sent from player i to player j from round 1 to

round r. That is,

zrij = (λ1ij, λ
2
ij, . . . , λ

r
ij) ∈ Zr

ij ≡ Λ1
ij × Λ2

ij × · · · × Λr
ij.

Let zr = (λ, λ, . . . , λ) be the sequence of r null messages. A full history of messages
through round r is given by hr = {zrij}i 6=j . A corresponding history of messages between
players i and j is given by (zrij, z

r
ji).

I allow the contracting institution to specify a public randomization device following
messages. Let σ denote this random draw.

The contracting institution specifies a mapping from the outcome of the contracting
phase (the full history of communication through R, as well as the random draw σ) to the
contracts formed between the various pairs of players. For any such outcome (hR, σ), let
µ(i, j, hR, σ) denote the contract formed between players i and j. Because µ(i, j, hR, σ)
and µ(j, i, hR, σ) would be the same contract, we can avoid the redundancy by defining
µ(i, j, ·) only for i < j. Then, for a given sequence of messages and random draw (hR, σ),

2Due to full verifiability, the analysis here would not be affected if one allowed contracting partners to
commit to make transfers to, but not from, third parties.
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the function describing the sum of contracted transfers is

M ≡
n−1∑
i=1

∑
j>i

µ(i, j, hR, σ).

Remember that M maps A to Rn
0 .

A contracting institution is called natural if the following assumptions hold: First,
contracting is private in that (a) a given player can receive messages from only those to
whom he or she is linked in the network, and (b) a player cannot observe messages ex-
changed between other players. Second, contracting in different relationships takes place
independently. Third, players have the option of rejecting contracts. Here are the formal
descriptions of these assumptions:

Part b of the private contracting assumption requires that, at the end of round r, player i’s
personal history is exactly the sequence of messages to and from this player:

hri = {zrij, zrji}j 6=i ∈ Hr
i ≡ ×j 6=i(Zr

ij × Zr
ji).

It follows that player i’s strategy in the contracting phase specifies, for each round r, a
mapping from Hr

i to ×j 6=iΛr
ij .

The assumption of independent contracting requires that the contract between any two
players i and j depends only on the sequence of messages between these two players. That
is, µ(i, j, hR, σ) depends on hR only through the component (zRij , z

R
ji). We can therefore

write µ(i, j, (zRij , z
R
ji), σ).

To represent that players can reject contracting, I assume that if player i always sends
the null message to player j then the contract formed between these two players is exactly
the null contract. That is,

µ(i, j, (zR, zRji), σ) = µ(i, j, (zRij , z
R), σ) = m,

for all zRij and zRji.
To make precise the assumption that players may communicate only with players to

whom they are linked (part a of private contracting), I suppose that the network L trans-
forms the game form into an effective game form in which, for each pair of players i and j,
if (i, j) 6= L then these players are restricted to send each other the null message in each
round. Thus, zRij = zR and zRji = zR, for all pairs such that (i, j) 6= L. In this case, note
that no information can be exchanged directly between players i and j, and their contract
is null.

To summarize, a contracting institution C is defined by a number of rounds R, message
spaces (Λr

ij)i,j,r, a public-randomization device, and functions µ(i, j, ·) for all i < j. It is
natural if it satisfies the assumptions detailed above.

Notion of Implementation
For a given contracting institution C, network L, and underlying game 〈A, u〉, the entire
game between the players runs as follows:
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1. Contracting phase: Players interact in C to form contracts, resulting in the setM.

2. Production phase: Players simultaneously select actions in the underlying game.

3. External enforcement phase: The enforcer observes the outcome a of the under-
lying game and compels the transfers M(a). The payoff vector for the players is
u(a) +M(a).

Note that, because of private contracting, the players have asymmetric information at the
time of productive interaction. For example, player i does not observe the contract formed
between two other players j and k. I analyze behavior using the concept of perfect Bayesian
equilibrium (PBE) in pure strategies.

In the analysis that follows, I hold fixed the number of players n and the space of action
profiles A. The primary objective is to evaluate the performance of a given contracting
institution across various networks L and underlying games 〈A, u〉. Let us say that a con-
tracting institution C implement efficient outcomes if for every product set A ⊂ A, every
payoff function u :A→ Rn, and every connected network network L, there is a PBE of the
entire game in which an efficient action profile a∗ is played. Let us say that C implements
ε-efficient outcomes if for every product set A ⊂ A, every payoff function u : A → Rn,
and every connected network network L, there is a PBE of the entire game in which an
efficient action profile a∗ is played with probability at least 1− ε. Finally, let us say that C
virtually implements efficient outcomes if this contracting institution implements ε-efficient
outcomes for all ε > 0.

3 Applications and Related Literature
To relate the analysis herein to the previous literature, it is useful to distinguish lack-of-
direct-links externalities from the kind of externalities that the literature has focused on.
Let us say that an externality of non-contractibility is present when a pair of linked players
is not able to condition transfers on an action that is payoff relevant to them (perhaps
one of their own actions or the action of a third player). Also, let us say that a setting
exhibits sparse contracting if some pairs of players are not able to contract, irrespective of
whether they care about each others’ actions in the underlying game. Much of the related
literature comprises special cases of the general model proposed here. In these models,
there are no externalities due to lack of direct links. Rather, the focus is on externalities
of non-contractibility or problems of sparse and/or decentralized contracting as opposed to
contracting by all players as a group. Each of these models specifies a single contracting
institution, typically a protocol with simultaneous commitments or offers. Holding aside
common agency, which produces efficient equilibria, the literature finds that inefficient
outcomes are generally inescapable even without externalities of non-contractibility.

Below are brief descriptions of a few applications and more details on the related liter-
ature. Figures 2 and 1 illustrate the network structures in the applications.
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Subcontracting Commons General

Figure 1: Some applications.

Subcontracting and supply chains
In the simplest version of this application, a buyer contracts with one or more “first-

level” suppliers to provide related goods or services. These suppliers do not perform all of
the required tasks, however. The first-level suppliers contract with a second level of sup-
pliers who can perform the additional tasks. The second-level folks may, in turn, contract
with agents at a third level, and so on. The buyer’s payoff depends on all of the suppli-
ers’ actions, but the buyer can contract only with the first-level suppliers. One example
is a typical construction project, whereby a property owner contracts with a commercial
building contractor, who separately contracts with “subcontractors” to provide individual
components.

In the setting just described, the various suppliers take actions in the underlying game
and the buyer obtains a benefit as a function of the action profile. The network limits the
buyer from contracting directly with all of the suppliers, but there is a path from the buyer
to each supplier through the subcontracting relationships.

Commons
Commons problems (most prominently described by Hardin 1968, less prominently

by Lloyd 1833) feature a dense system of interdependence, whereby each player’s action
affects the welfare of everyone else in the society. Standard examples include extraction
of an exhaustible common-property resource, resource use in an open-access environment,
population growth, and other individual activity that creates a public good or bad. In the
underlying game of a commons problem, every player has an action and everyone’s payoff
depends on everyone else’s actions (sometimes through an aggregate). Although in some
cases it may be possible for the entire society to establish a contract at once (the grand
coalition), in other cases agreements can be made only in smaller groups. The framework
herein addresses the case in which all contracting is bilateral.

Common agency
In the common agency model introduced by Bernhaim and Whinston (1986a,b), there

is a single “agent” and multiple “principals.” In the underlying game, only the agent has
an action; the principals all care about the agent’s action. The network of links is a star in
which the agent is directly linked to every principal and there are no other links. The con-
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tracting institution involves the principals simultaneously making commitments regarding
how much money to transfer to the agent as a function of the agent’s action. The agent
does not have the option of declining the principals’ offers, so in a sense the setting has
unilateral commitments rather than contracting; however, the transfers are constrained to
be nonnegative, so the agent would never refuse.

The common agency setting does not have externalities of the types described in the
introduction. The principals can all contract on the action that they care about (the agent’s
action). Furthermore, the principals can all contract with the party who takes this action
(the agent). There is sparse contracting since the principals cannot contract with each other
(they are not connected in the network). Efficient equilibria always exist in settings of
complete information, so the large literature on common agency focuses mainly on inter-
esting questions of equilibrium characterization. Recent entries, such as Prat and Rustichini
(1998) and Bergemann and Valimaki (2003), examine settings in which the principals make
their commitments sequentially; as with the static case, there are efficient equilibria.3

Games played through agents
Prat and Rustichini (2003) examine a setting that extends the common agency frame-

work to have multiple agents. Only the agents have actions in the underlying game. The
other players (the principals) simultaneously make unilateral commitments regarding how
much money to transfer to the agents as a function of the agents’ actions. Prat and Rusti-
chini’s model covers some important applications, including settings of lobbying, multiple
auctions, vertical restraints, and two-sided matching. The authors examine the case in
which a transfer to one agent can be conditioned on the actions of all of the agents, so there
are no externalities of non-contractibility. There are also no externalities due to a lack of di-
rect links, because it is assumed that each agent does not care about the actions of the other
agents. Contracting is sparse since agents cannot contract with one another and, likewise,
principals cannot contract with one another. Still, efficient equilibria are not guaranteed,
although they arise in some cases.

Common principal
In Segal’s (1999) model of contracting with externalities (see also Segal and Whinston

2003), a principal and multiple agents are connected by a star network with the principal
in the center. The principal is the only player with an action in the underlying game.
The contracting institution requires the principal to simultaneously offer contracts to the
agents, and then the agents decide whether to accept or reject the contracts. Cases of
private and public contracting are studied. The principal’s action is multidimensional, with
one component for each agent (representing, for instance, the amount to trade with this
agent). Agents care about not only their own level of trade with the principal, but they also
care about the principal’s level of trade with other agents.

Segal (1999) assumes that a contract with one agent cannot specify transfers as a func-
tion of the action components for other agents, so this setting exhibits externalities due to

3The literature also looks at settings with incomplete information, where efficient outcomes are generally
not attained. For a survey of the literature, see Martimort (2007).
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Player with no productive action.Player who has a productive action.
Arrows indicate direction of offers.

Common principalCommon agent Games played through agents

Figure 2: Applications studied in the literature.

non-contractibility. Unless the principal can make the trade with one agent conditioned
on communication with another (a departure from natural contracting), equilibria are typi-
cally inefficient. The common principal framework has no externalities due to lack of direct
links, although contracting is sparse.4

A variation on Segal’s model involves a setting in which the agents have actions in
the underlying game and they care about each others’ actions. This case, which to my
knowledge the previous literature has not examined, presents an interesting version of the
lack-of-direct-links externality whereby contracts are clustered on a central party (a star
network).5

Organizations and the firm
An important, but relatively undeveloped, theory of the firm views an organizational

structure as a nexus of contracts (Jensen and Meckling 1976). See Laffont and Martimort
(1997) for a survey of the literature.6 Because of various transaction costs, contracting
takes place bilaterally or in small groups rather than by the entire set of players collec-
tively. In this application, the underlying game represents the productive interaction be-
tween the players, and the network represents the limitations on contracting that arise due
to transaction costs. A key question is whether the network leads to a nexus of contracts
that supports efficient outcomes. The special case of a star network captures the example

4See Galasso (2008) for a recent study that looks at various bargaining protocols and provides additional
references. Moller (2007) performs an analysis of the common-principal problem with sequential contracting.

5The modeling exercise herein does not have much to add to what the literature has already learned
about the common-principal setting in the case where only the principal has productive actions. Under the
assumption that a principal-agent pair can specify transfers as a function the principal’s entire vector of
trades (as I assume here), the common-principal model converges to the common-agency model except with
a different contracting institution. In the common-agency case, the player in the center (called the agent)
has the productive action and this player receives offers from the others. In the common-principal case, the
player in the center (called the principal) has the productive action but this player makes offers to the others.
Since the common-agency models have efficient equilibria, it is clear that in any setting with a star network
and where the center player is the only one with an action in the underlying game, there exists a natural
contracting institution that implements efficient outcomes.

6Other organizational structures comprise networks of contracts but may not be regarded as traditional
firms. Cafeggi (2008) provides one legal perspective.
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of a team of workers who all have bilateral employment contracts with a manager, and this
is an example of a common-principal model where agents have productive actions.

Other Models in the Literature
I conclude this section with notes on some other related papers in the literature. Jackson

and Wilkie (2005) study a model in which players can make unilateral commitments before
playing an underlying game. The commitments are promises to make positive monetary
transfers to other players as a function of the action profile in the underlying game. Every
player can commit to make transfers to every other player, so the implied network is com-
plete. The institution that determines promises is one-shot, simultaneous announcement of
commitments; these are public, so the underlying game is played with common knowledge
of the transfer functions. The authors characterize the equilibrium outcomes; they show
that efficient outcomes can be supported in some cases but not generally.

Ellingsen and Paltseva (2011) expand on Jackson and Wilkie’s (2005) model by allow-
ing the players to form agreements rather than just make binding promises. A contract
is formed only if both players accept the deal. Ellingsen and Paltseva allow unilateral
promises as well. They show that, regardless of the underlying game, there exist efficient
equilibria.7

Peters and Szentes (2008) examine a setting in which players can make unilateral com-
mitments about how they will play in the underlying game. The authors call these “con-
tracts,” but let me describe them as “promises” to relate them to the objects in Jackson
and Wilkie’s model. The key feature in Peters and Szentes’ model is that each player’s
promise can be conditioned on the promises of others. The authors develop a mathemati-
cal apparatus to handle the infinite regress issue, and they prove a folk theorem (implying
the existence of efficient equilibria). Their modeling exercise reveals that interactive con-
tracts require the external enforcement system to develop a sophisticated language for the
cross-referencing of promises.8

The model herein shares a theme of Jackson and Wilkie (2005) in terms of looking at a
wide class of contracts with full verifiability. I carry the theme further by exploring various
contracting institutions and decentralized contracting along network links. Also, in com-
parison to the papers just discussed, I examine contracts (rather than unilateral promises)
and private contracting. I assume that contracts can condition transfers on the verifiable
productive actions of others but not on the contracts written elsewhere in society.

Further afield is the growing literature on coalitional bargaining. In these models, the
grand coalition can form a contract (so centralized contracting is possible) but subgroups of
players can shape the final agreement by first making agreements in their smaller coalitions.
The incentives of coalitions to manipulate in this way sometimes precludes the attainment
of an efficient outcome.9 De Fontenay and Gans (2007) depart from the coalitional bargain-

7Related papers from the prior literature include Guttman (1978), Danziger and Schnytzer (1991),
Guttman and Schnytzer (1992), Varian (1994), and Yamada (2003).

8There are important examples of contracts on contracts in the real world, such as non-compete covenants,
requirements for subcontracting, and the like. This type of contracting is ruled out here, however.

9The typical model has a public, dynamic negotiation process. Payoffs are described in terms of a char-
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ing literature by presenting a model with only bilateral bargaining by players linked on a
network. There are externalities due to both the lack of direct links and non-contractibility
(links pairs can contract on only their own “trade” and cannot condition transfers on actions
taken in other relationships). Disagreement permanently severs the link and leads the other
pairs to contract from scratch. Contracting takes place sequentially and privately, except
that everyone knows when a link is broken. The authors show that, under passive beliefs,
equilibria produce the Myerson value of a characteristic function defined by bilaterally
efficient actions, but efficiency generally cannot be attained.

4 Efficient Implementation
This section presents the main result.

Theorem: Fix n and A. There exists a natural contracting institution C that virtually
implements efficient outcomes.

Note that the natural contracting institution identified here performs well for all connected
networks and all underlying games. That is, with this single contracting institution, for
every connected network and every underlying game, efficiency is approximately obtained
in a PBE.

The rest of this subsection contains the proof, with one minor part contained in the
Appendix. The proof features a contracting institution with a two-part messaging structure,
where tentative contracts are formed and then players have the option of canceling them.
In the first round of messaging, the contracting pairs engage in a Nash demand protocol
that determines their tentative contracts and “cancellation penalties.” In later rounds the
players can unilaterally cancel these contracts. Contracts that are not canceled will then be
enforced. If a player is the first to cancel a contract, then this party must pay a cancellation
penalty.

Formally, define institution C∗ as follows. LetR be any integer that is at least n−1. The
public randomization device is a draw from the uniform distribution on the unit interval.
Message spaces in the first round are such that the players name (i) arbitrary mappings
from A× [0, 1] to transfers between the contracting parties, and (ii) cancellation penalties.
That is, for each pair of players (i, j), Λ1

ij is the set of pairs (g, p). The first element is a
mapping g :A× [0, 1]→ Rn

0 that satisfies gk(a, σ) = 0 for all k /∈ {i, j}, every a ∈ A, and
every σ ∈ [0, 1]. The second element is a vector p = (p2, p3, . . . , pR) ∈ RR−1, where pr is
the cancellation penalty for round r. Identify the null message λ for round 1 as the constant
function g ≡ (0, 0, . . . , 0) and p = 0. If players i and j sent the same message (g, p) in

acteristic function over coalition structures or a state variable that can be changed over time by the active
coalition. A representative sample of contributions is: Chatterjee et al. (1993), Seidmann and Winter (1998),
Gomes (2005), Gomes and Jehiel (2005), Bloch and Gomes (2006), Hafalir (2007), and Hyndman and Ray
(2007).
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round 1, then call g their “provisional arrangement.” In every round r > 1, the message
space is defined as Λr

ij ≡ {cancel, λ}.
For each pair (i, j), function µ(i, j, ·) is defined in a straightforward way. If the players

named different pairs (g, p) in round 1, then they get the null contract m. Next suppose
players i and j named the same pair (g, p) in round 1 and they sent message λ in all later
rounds. Then for random draw σ, the contract between them is defined to be m ≡ g(·, σ).
Finally, if the players named the same pair (g, p) in round 1 and one or both of them later
sent the message “cancel,” then the contract between them is a constant transfer. For this
case, let r̃ be the round in which the message “cancel” was first sent. If player i alone sent
the “cancel” message in round r̃, then the constant transfer is pr̃ from player i to player j.
If player j alone sent the “cancel” message in round r̃, then the constant transfer is pr̃ in the
other direction. If the players both canceled in round r̃ then the constant transfer is defined
to be zero (the null contract m).

Contracting institution C∗ is natural. To see this, note that contracting is private because
we look at the effective game form that restricts messages to λ between pairs of players
that are not in the network. Contracting is independent across relationships because the
contract between players i and j is a function of only the messages that players i and j
exchange. Finally, players can reject contracts (unilaterally force the null contract) by
sending message λ in the first round.

Fix contracting institution C∗. Consider any underlying game 〈A, u〉 and any connected
network L, where A ⊂ A. We must show that, for any number ε > 0, there is a PBE
of the entire game in which an efficient action profile a∗ is played with probability of at
least 1− ε. I proceed by first analyzing two special cases. The first contains the key ideas
behind the proof; all but the most avid readers will probably want to skip the second and
third cases.

Case 1: The underlying game 〈A, u〉 has a pure-strategy Nash equilibrium a and there is
an efficient action profile a∗ such that ai 6= a∗i for each i ∈ N .

In this case, the efficient action profile has all of the players selecting actions that differ
from their underlying-game Nash equilibrium actions. I will show that there is a PBE
in which a∗ is played with probability 1. The first step is to find a minimally connected
sub-network K ⊂ L, where each pair of players is connected (indirectly or directly) by
exactly one path. That is, for each pair of players i and j, there is exactly one sequence
{kt}Tt=1 ⊂ N with the following properties: k1 = i, kT = j, and (kt−1, kt) ∈ K for all
t = 2, 3, . . . , T . The sequence {kt}Tt=1 is called the path from i to j. A minimally connected
subnetwork K exists by construction and is defined to be symmetric.

For each (i, j) ∈ K, we can divide the set of players into two disjoint groups by relative
proximity to players i and j on network K. Define:

β(i, j,K) ≡ {k ∈ N | j is not on the path from i to k}.
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Figure 3: Construction of K and definition of β.

In words, β(i, j,K) is the set of players that, relative to player i, are on “the other side” of
networkK from player j. Figure 3 illustratesK and β. Note that β(i, j,K)∩β(j, i,K) = ∅
and β(i, j,K) ∪ β(j, i,K) = N . Define δ(i, j,K) to be the length of the largest path
between player i and players in the set β(i, j,K); this is zero if β(i, j,K) = {i}. Also,
for each player i, define Ki ≡ {j | (i, j) ∈ K} as player i’s active contracting partners,
which is the set of players that player i is supposed to establish non-null contracts with.

Define γ ≡ maxa,a′∈A,i∈N [ui(a)− ui(a′)], which is the maximum payoff difference for
the players in the underlying game. Let p∗ = (p2∗, p3∗, . . . , pR∗) be such that p2∗ > γ and
pr∗ = p2∗(r − 1) for all r = 3, 4, . . . , R. Let q be a number satisfying q > pR∗.

I next specify a set of contractsM = {mij}i<j , where mij denotes the contract for the
pair (i, j). In some places below I refer to the contract mij without specifying i < j; in the
case of i > j, it is understood that mij = mji but we do not include mij inM to avoid
double counting in the sum M . For players (i, j) ∈ K and action profile a ∈ A, define

Q(a, a∗, i, j,K) = #{k ∈ β(i, j,K) | ak 6= a∗k}.

This is the number of players on i’s side of the subnetwork whose actions differ from those
in a∗. We can find contracts with these properties:

• For each (i, j) 6∈ K, the contract is null (mij = m).

• At the efficient action profile, the payoff vector with transfers exceeds the Nash equi-
librium payoff vector: u(a∗) +M(a∗) ≥ u(a).

• For each (i, j) ∈ K, the contract between i and j is an assurance contract, where:

mij
i (a) = −mij

j (a) = mij
i (a∗) + [Q(a, a∗, j, i,K)−Q(a, a∗, i, j,K)]q

for all a ∈ A.

The second property simply requires finding transfers to satisfy the inequalities, and these
obviously exist given that K is connected. The third property is achieved by construction.
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Note that the contract is null for any pair (i, j) 6∈ L, since this implies (i, j) 6∈ K. Thus,
pairs who cannot contract have the null contract as required. Also, in general there will be
pairs who can feasibly contract but who essentially do not because they coordinate on the
null contract. These are pairs (i, j) ∈ L such that (i, j) 6∈ K.

Under the set of contracts just described, if a∗ is played then the players get a payoff
vector that exceeds that of the Nash equilibrium in the underlying game. In the contract
for the pair (i, j) ∈ K, player i assures player j that all of the players on player i’s side
of network K—that is, those in β(i, j,K), including player i—will select their part of the
efficient action profile. If any player in β(i, j,K) deviates from a∗β(i,j,K) then player i is
required to pay q to player j. This penalty is multiplied by the number of players on i’s
side of the network (including i) who deviate.

Because q exceeds the maximum payoff difference, clearly a∗ is a Nash equilibrium of
〈A, u+M〉, so the set of contracts supports a∗. I next show that there is a PBE of the entire
game in which these contracts are formed and a∗ is played. Here is a partial description of
player i’s strategy and beliefs, for any i ∈ N :

1. In round 1 of the contracting phase, and for each j ∈ Ki, player i is supposed to send
message (g, p∗), where g(a, σ) = mij for all σ.

2. If the messages sent in round 1 between player i and all of his contracting partners
were as prescribed (an event that player i can observe), then in round 2 player i is
supposed to send the null message to all of them. Specify the same rule for each
subsequent round: If player i detects no deviations with his contracting partners
through round r − 1, then player i is to send the null message to each of them in
round r. Furthermore, if player i and/or some of his contracting partners deviated
in an inessential way that could not affect the induced contracts with player i (by,
for example, saying “cancel” after forming a provisional arrangement that selects the
null contract), then player i should ignore these deviations.

3. Through any round r, if player i’s history conforms to specifications 1-2 above, then
player i believes that everyone has played as prescribed (even those whom player i
is not linked to).

4. If player i’s history through round R conforms to specifications 1-2 above, then
player i selects a∗i in the production phase.

5. Let j be a contracting partner of player i for which mij 6= m. Suppose player i’s his-
tory through round r−1 conforms to specifications 1-2 above, but that player j’s mes-
sage to player i in round r is a deviation. Suppose player i and his other contracting
partners exchange messages in round r as prescribed above. IfR−r+1 ≥ δ(i, j,K)
then, regardless of his own actions from round r+ 1, player i believes that at the end
of the contracting phase, the contracts between the players in β(j, i,K) will all be
null and that aβ(j,i,K) will be selected by these players in the production phase.
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6. If the event in item 5 occurs, then player i is supposed to send the message “cancel”
to all of his contracting partners in the remaining rounds of contracting phase.

7. Suppose that player i deviates in round 1 with a set J ⊂ Ki of contracting partners.
Then, regardless of his own actions from round 2, player i believes that, at the end of
the contracting phase, the contracts between the players in ∪j∈Jβ(j, i,K) ≡ J will
all be null and that aJ will be selected by these players in the production phase.

8. If the event in item 7 occurs, then player i is supposed to send the message “cancel”
to all of his contracting partners in the remaining rounds of contracting phase.

9. If the events described in items 5-6 occur, or the events described in items 7-8 occur,
then player i is supposed to select action ai in the productive phase.

It is not difficult to confirm that players prefer not to deviate from the behavior pre-
scribed here. That is, this partial description of strategies is sequentially rational. To see
this, first note that the behavior specified for the production phase has each player best re-
sponding to his belief about the actions of the other players. For instance, player i observes
no deviations in the contracting phase then he believes that contractsM were formed and
the other players will select a∗−i, to which a∗i is a best response given player i’s induced
payoff function ui + Mi. If player i were to deviate from a∗i , he would have to pay q to
each of his contracting partners in K because he has assurance contracts with them, and
this penalty exceeds whatever gain he gets in the underlying game. Likewise, if the events
described in items 5-6 occur, or the events described in items 7-8 occur, then at the end of
the contracting phase, player i believes that all contracts are null and that everyone else will
select a−i in the production phase. Player i’s best response is to choose ai as prescribed.

As for rationality in the contracting phase, first examine player i’s specified behavior
with any player j 6∈ Ki but with (i, j) ∈ L. These pairs are supposed to name the null
contract and cancel in every round, which is clearly rational for i under the expectation that
j will do so.

Regarding player i’s more substantive relation to other players, consider three options
for player i. First, player i could behave as prescribed. Given that the other players do
the same, player i can anticipate getting the payoff ui(a∗) + Mi(a

∗). Second, player i
might consider deviating in round 1 with one or more of his contracting partners, thereby
nullifying the contracts with them. If he does this, the affected contracting partners will
perpetuate a wave of cancellations, and the connected players will eventually select their
part of a. After the initial deviation, player i thus has the incentive to cancel all of his
contracts in round 2. If he fails to cancel a contract with a player j then he will later have
to pay player j a multiple of the assurance penalty q, given that he expects aβ(i,j,K) 6=
a∗β(i,j,K). It is better for player i to cancel the contract with player j and forfeit the smaller
cancellation penalty p2∗. Furthermore, player i strictly prefers to cancel in round 2 rather
than later, because the cancellation penalty increases over time. Still, the cancellation
penalty outweighs any payoff gain in the underlying game, so player i’s best hope for a gain
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by deviating in round 1 is to deviate with all of his contracting partners—that is, by forming
null contracts from the beginning. But this sets off a wave of cancellations and ultimately a
is played in the production phase, which gives player i a payoff of ui(a) ≤ ui(a

∗)+Mi(a
∗).

The third option for player i is to deviate only after round 1 of the contracting phase,
nullifying contracts by canceling them. For instance, player i could wait until round R and
catch his contracting partners by surprise with some cancellations. This is also a bad option,
however, because player i would then have to pay the cancellation penalty of pR∗ times the
number of contracting partners with whom player i cancels. The penalty outweighs any
gain in the underlying game and implies a payoff below ui(a

∗) +Mi(a
∗).

To see why the condition R − r + 1 ≥ δ(i, j,K) is important to items 5 and 6 above,
observe that this guarantees that there are enough rounds for the contagious sequence of
cancellations to reach all of the players in the set β(i, j,K). When player i observes j’s
deviation, player i can conclude that player j is in a sequence of cancellations that will
eventually reach all of the players in β(j, i,K). This is true because, by round r, already
r − 1 rounds of cancellations may be thought to have occurred within the set β(j, i,K),
and further cancellations can occur until the end of the contracting phase. So player i can
believe that player j and the others in β(j, i,K) believe that all contracts will be nullified,
and everyone has the incentive to select their part of a in the production phase. If R −
r + 1 < δ(i, j,K) then the cancellation sequence would not reach everyone in β(i, j,K)
and thus player i could not necessarily believe that everyone expects a to be selected in the
production phase; in this case, player i might think that a∗β(j,i,K) is possible and then not
have the incentive to cancel contracts or select ai.

The only loose end in the analysis is that I have not described beliefs and behavior
for some out-of-equilibrium contingencies, such as when two players deviate at the same
time or when player j cancels a contract with player i but there are not enough rounds
remaining to ensure that a contagious cancellations would reach all players. A complete
the description of the PBE requires stating these beliefs and action choices, and showing
that the beliefs are consistent and the actions are sequentially rational. A sketch is provided
in the Appendix.

Case 2: The underlying game 〈A, u〉 has a pure-strategy Nash equilibrium a and, for each
i ∈ N , either ai 6= a∗i or a∗i is a best response to a∗−i.

I will show that in this case, as in Case 1, there is a PBE in which a∗ is played with
probability 1. For any J ⊂ N , let UJ(a) ≡

∑
i∈J ui(a). Let N̂ be the set of players for

which ai 6= a∗i . These are the players whose actions will trigger penalties under assurance
contracts.

We can find a set K ⊂ L that minimally connects N̂ . Some players outside of N̂ may
be included, but they are not peripheral to K; that is, each has two or more links. Let I be
the set of players connected by K.
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Figure 4: Construction of K for case 2.

I next define the subnetwork K of active contracting pairs who will form non-null
contracts. If UI(a∗) ≥ UI(a) then let K = K. In this case, the efficient profile a∗ generates
enough value to the players inK so that, by making transfers between them, they can all be
made better off than if a were to be played. If UI(a∗) < UI(a) then more players will have
to be included to make the joint value exceed that of a. In this case, let K be the union of
K and additional paths in L, now connecting a subset I of players, with I ⊂ I . This can be
done such that (i) K minimally connects I and (ii) K minimally achieves UI(a

∗) ≥ UI(a),
in the sense that removing a peripheral player (who is in I \I and is linked to just one other
player) would reverse this inequality.

A simple construction algorithm suffices to deliver K. Starting with K, we will add
a link (i, j) for some player i ∈ I and some player j ∈ N \ I for which (i, j) ∈ L.
Since L is connected, there is such a player. If UI∪{j}(a∗) ≥ UI∪{j}(a) then the algorithm
terminates. Otherwise, we continue by adding another player k who is linked via network
L with a player in I ∪ {j} but who is not yet included, again checking the joint value
inequality. We continue in this way until the joint value inequality holds. The algorithm
must reach its goal, because UN(a∗) ≥ UN(a). Once this algorithm terminates, we conduct
a paring routine in which any peripheral player whose removal would not flip the joint
value comparison is removed from the network.10 The result is a network K with the
desired properties.

Note that, unlike in Case 1, the network of active contracting pairs K is generally
not complete. Thus, there may be players who are supposed to have null contracts with
everyone else.

Let q and p∗ be set as before. We can find a set of contractsM = {mij}i<j with the
following properties:

1. For each (i, j) 6∈ K, mij = m.

2. For each (i, j) ∈ K, mij is an assurance contract with penalty q.

3. For all i ∈ I , ui(a
∗) +Mi(a

∗) ≥ ui(a).
10The paring routine is important because when adding a player, the joint value difference may rise more

than it did in a previous round.
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4. [(i, j) ∈ K, i ∈ I, j ∈ I \I] implies ui(a) > ui(a
∗) +Mi(a

∗)−mij
i (a∗).

5. [(i, j), (j, k) ∈ K,K ⊂ β(i, j,K)] implies uj(a) > uj(a
∗) +Mj(a

∗)−mjk
j (a∗).

If K = K then the contracts between these players can be constructed exactly as in
Case 1. If K 6= K then one can find a set of contracts that meets the requirements by using
the following algorithm. First, create the contracts between the players in I and those
linked to I in network K. Clearly, one can do this so that ui(a∗) + Mi(a

∗) = ui(a) for all
i ∈ I , and so that mij

i (a∗) > 0 for all i ∈ I, j 6∈ I with (i, j) ∈ K. For any such player j,
we look to see whether this player is part of a longer chain away from I . If so, we arrange
his other contracts so that uj(a∗) + Mj(a

∗) = uj(a). Continue this construction for other
players in I \I . By construction, payments flow in from the periphery of I to I conditional
on a∗ being played.

Consider the strategies as described for Case 1, except now player i’s active contracting
partners are given by K

i ≡ {j | (i, j) ∈ K} rather than by Ki. Furthermore, make some
adjustments to the penalties for the contractual relationships at the periphery of K and
beyond. These are players in the set

P ≡ {i ∈ K | there exists j ∈ I \I with (i, k) ∈ K} ∪ (I \I).

For any relationship (i, j) ∈ K such that i ∈ P , define δi ≡ δ(i, j,K) and prescribe that
players i and j name cancellation penalties p̂ = (p̂2, p̂3, . . . , p̂R) defined as follows: p̂r = 0
for r = 2, 3, . . . , δi+1, p̂δi+2 > γ and p̂r = p̂δi+2(r−δi−1) for all r = δi+3, δi+4, . . . , R.
Next consider any relationship (i, j) ∈ K such that i, j ∈ P , and without loss of generality
order the players so that β(i, j,K) ⊂ I \I . That is, player i is outside of player j with
respect to the core group I . Prescribe that players i and j name cancellation penalties p̂
defined in the same way. For the rest of the contractual relationships inK, specify that they
name p∗ as defined in Case 1. The idea is to give players in the set P a way of canceling
without penalty for a number of rounds that equals their distance from the periphery of K.

No player in the set I can profitably deviate by nullifying any contracts with other
players in I , for the same reasons as explained in Case 1. Next consider a players i ∈ I
who has a non-null contract with a player j ∈ I \ I . If the contract between player i
and player j is nullified in round 1, then player i expects a cancellation sequence to the
players in the set β(j, i,K); but since all of these players still play a∗

β(j,i,K)
= aβ(j,i,K) in

the productive phase, player i would not be subject to any penalty if he kept the prescribed
contracts with his links in I . However, player i no longer gets the positive transfer from
player j and he would then expect a payoff below ui(a), given property 4 above. Thus, if
his contract with j is nullified in round 1, player i prefers to cancel his other contracts in
round 2, when he does not have to pay a cancellation penalty. Furthermore, player i has no
interest in canceling the contract with j to begin with, given property 4.

Regarding the other players, note that those at the periphery of I are paying in to get a∗.
If they nullify in round 1, a cancellation sequence progresses and the outcome is a, which
is worse given property above. A player i along a path outside of I will cancel inward if
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an outward link cancels, due to the anticipated payoff otherwise falling below ui(a)) as
property 5 above implies. Also, this player will cancel outward if an inward link cancels,
due to the assurance contract with the outward link. Overall, if any non-null contract is
nullified then it leads to a full cancellation sequence and a. Every player in I prefers that
this not happen. Each player i who is outside of I expects that all other players will end
up selecting either a∗−i or a−i, to which the prescribed a∗i = ai is a best response at the
production phase.

Case 3: The underlying game 〈A, u〉 has a mixed-strategy Nash equilibrium α and/or there
is a player i for whom αi is a point mass on a∗i and a∗i is not a best response to a∗−i.

A separate construction in this case is required to deal with the following kind of ex-
ample.

Example 3: Suppose n = 3, A1 = A2 = {b, c}, and player 3 has no action in the un-
derlying game. Payoffs in the underlying game are given by: u(b, b) = (1, 1, 0), u(c, b) =
(0, 0, 5), u(b, c) = (0, 0, 0), and u(c, c) = (0, 1, 0). The network is L = {(1, 3), (2, 3)}.

In this example, a = (b, b) is the Nash equilibrium of the underlying game, and the
efficient action profile is a∗ = (c, b). Note that a2 = a∗2 = b and also b is not a best
response for player 2 to c being played by player 1; thus, this example does not fit into
Cases 1 or 2 but is in Case 3.

Here is the problem with trying the equilibrium construction used in Case 2. The con-
tract between players 2 and 3 would need to specify a transfer of at least 1 to player 2 when
a∗ is played; otherwise, player 2 would prefer to nullify the contract and induce a. How-
ever, suppose that player 3 nullifies with player 2 and keeps the prescribed contract with
player 1. According to the construction used in Case 2, player 2 must believe that player 3
actually does cancel with player 1, so that player 1 will then select b in the production
phase and player 2 selects the best response b. However, in this case, player 3 is better off
because (c, b) is played, he does not have to transfer any money to player 2, and he pays
no penalty to player 1 since player 2 selects b.

With a slight adjustment in strategies, the construction used for Case 2 can be applied
to this case. Define N̂ to be the set of players with more than one feasible action in the
underlying game, and let â be an action profile in which âi 6= a∗i for all i ∈ N̂ . The basic
idea is for the players to use the public randomization device to contract on randomizing
between a∗ and â. Specifically, players form contracts that coordinate on a∗ with proba-
bility 1 − ε (that is, if σ > ε) and â with probability ε (if σ ≤ ε). Contracts are of the
assurance form so, for example, if σ > ε and a∗ is not played then the relevant players have
to pay the penalty q.

If one of player i’s contracts is nullified and as a result player i expects some others to
play their part of the Nash strategy profile α, then with positive probability the productive
outcome will differ from what player i is assuring his other contracting partners. Thus,
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unless player i cancels his other contracts, he anticipates paying the penalty q with a prob-
ability that is bounded away from zero. If q is set high enough, player i strictly prefers to
cancel his other contracts and the logic from Cases 1 and 2 goes through.

Here are a few more details. If UN(a∗) = UN(α) then finding a PBE that achieves an
efficient outcome is trivial, so let us assume that UN(a∗) > UN(α). Fix ε > 0. Sets I and
I and networks K and K are defined exactly as in Case 2, using α in place of a and using
the correlated mixed strategy (a∗, 1− ε; â, ε) in place of a∗. As long as ε is small enough,
the joint payoff of (a∗, 1− ε; â, ε) strictly exceeds the joint payoff of α for the entire set of
players, and K is well defined. The incentives for the players works out as described for
Case 2 and we have a PBE in which efficient action profile a∗ is played with probability
1− ε. Note that the required q becomes large as ε gets closer to zero.

Cases 1-3 cover every underlying game 〈A, u〉. Also, recall that Lwas an arbitrary con-
nected network. Therefore, C∗ implements ε-efficient outcomes. Because ε was arbitrary,
we have that C∗ virtually implements efficient outcomes.

5 Conclusion
The modeling exercise presented here demonstrates that there are natural contracting insti-
tutions that support efficient outcomes through decentralized contracting, assuming the net-
work of contracting partners is connected and there are no externalities of non-contractibility.
In particular, externalities due to lack of direct links can be internalized through contractual
chains.

In one sense, this modeling exercise follows Hurwicz’s (1994) prescription of incorpo-
rating “natural” constraints into problems of institutional design. This is in contrast to an
extreme perspective that posits a centralized policymaker who has complete control over
the design of the game form in which economic agents (players) will be engaged. In reality,
this design problem is constrained by an exogenous physical reality. Constraints include
actions and communication routes that are naturally available to the players and from which
they cannot be excluded, as well as barriers to the inclusion of some other communication
channels.

As Jackson and Wilkie argue (2005), Hurwicz’s suggestion must be taken a step further
since real mechanisms are not designed by an outsider. Rather, the players themselves
determine the mechanism. Depending on the unit of analysis, there will be both “external
planner” and “player” design elements. In the model herein, the contracting institution is
an object of external design, and it must obey the physical reality represented by the natural
contracting assumptions. The contracts are the player design element. These come together
to determine the induced game between the players.

The model presented here leaves out some institutional constraints, for instance having
to do with limits on the information or sophistication of the external enforcer. It would be
useful in future research to identify these constraints and examine how the design of the
institution can restrict contracting in such a way as to improve the prospects of efficient
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outcomes. A simple illustration along these lines is given by comparing the results of Jack-
son and Wilkie (2005) and Ellingsen and Paltseva (2011). One might ask if a legal system
should enforce unilateral promises or just contracts. In the two-player setting, Ellingsen
and Paltseva’s results suggest that the key is to enforce contracts, and then it does not mat-
ter whether promises are also enforced. But suppose promise-making and contracting are
costly, and it is cheaper to make a promise than to form a contract. Then, it may be best
to enforce only contracts in order to avoid the inefficiencies that arise when players only
make strategic promises.

On future research, it would also be useful to examine special classes of underlying
games, for instance ones with “linear externalities” (as in Example 2) as opposed to “com-
plex externalities” (as in Example 3). Many further issues arise. For instance, is the con-
tracting institution developed in the proof a realistic one? Are there physical constraints
(for instance, limiting to finite rounds of communication) that would preclude this institu-
tion from operating? If so, are there feasible institutions that can perform well, at least in
specific cases? It may also be useful to develop a hybrid model in which the contracting
phase is modeled in coalitional/cooperative form, which may produce a simpler technical
structure suitable for applied analysis.

Appendix
Here I sketch how to complete the PBE construction for Case 1. The structure is the similar
for Cases 2 and 3. The specification of strategies given in the text leaves out what player i
should believe and do in some off-path contingencies. The argument below establishes that
there is a way to complete the strategy and belief specification to form a PBE.

Fix an underlying game 〈A, u〉 and consider an artificial game in which the contracts
M and cancellation penalties described in the text for Case 1 are exogenously supplied
to the players and then, in rounds 1 through R, each player has the opportunity to cancel
any of his contracts as contracting institution C allows. Thus, interaction occurs just as in
contracting institution C except that the players do not name pairs (g, p) in round 1 of the
contracting phase; instead, they decide only whether to cancel the exogenously supplied
contracts. Assume that the fee for canceling a contract in round 1 is 0.

Note that there is a finite number of information sets and actions in the game just de-
scribed. (Each player chooses between “cancel” and λ in the R rounds of the contracting
phase.) We can translate the specification of beliefs and behavior in the text to the artificial
game by interpreting the choice of “cancel” in the first round of the artificial game as the
selection of the null message in the first round of the actual game. The construction in
the text thus specifies beliefs and behavior for some of the information sets in the artificial
game, in particular (i) ones in which the players select and observe λ in each round, and (ii)
ones in which players experience nullification of a contract with enough rounds remaining
for a cancellation sequence to reach all players.

Fixing these specifications, one can perform the standard PBE existence argument on
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the set of consistent beliefs and strategies for the remaining information sets. This yields
a PBE for the artificial game. Furthermore, applying this specification to the actual game
covers all information sets except ones in which players select a message in round 1 that
is neither the prescribed message nor the null message. If this happens in a contractual
relationship, and if the resulting preliminary arrangement is null, then let us specify that
these players continue as though just one of them deviated by selecting the null message.

This leaves contingencies in which players i and j in a contractual relationship both de-
viated to select the same message (g, p). In this case, assume that player i believes through-
out the contracting phase that player j did not deviate in round 1 with any of player j’s other
contracting partners. Under the assumption that this is true for both players i and j, one
can then find an equilibrium specification for the restricted game between players i and j.
Use this equilibrium to define the beliefs of player i for all information sets, including ones
in which player i deviated with several different contracting partners in round 1, and let i’s
strategy provide for a sequential best response. By construction, we have sequentially ra-
tional strategies and consistent beliefs over all information sets.
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